ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak superconducting pairing and a single isotropic energy gap in stoichiometric LiFeAs

158   0   0.0 ( 0 )
 نشر من قبل Dmytro Inosov S.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report superconducting (SC) properties of stoichiometric LiFeAs (Tc = 17 K) studied by small-angle neutron scattering (SANS) and angle-resolved photoemission (ARPES). Although the vortex lattice exhibits no long-range order, well-defined SANS rocking curves indicate better ordering than in chemically doped 122-compounds. The London penetration depth of 210 nm, determined from the magnetic field dependence of the form factor, is compared to that calculated from the ARPES band structure with no adjustable parameters. Its temperature dependence is best described by a single isotropic SC gap of 3.0 meV, which agrees with the ARPES value of 3.1 meV and corresponds to the ratio 2Delta/kTc = 4.1, approaching the weak-coupling limit predicted by the BCS theory. This classifies LiFeAs as a weakly coupled single-gap superconductor, similar to conventional metals.



قيم البحث

اقرأ أيضاً

Using a realistic ten-orbital tight-binding model Hamiltonian fitted to the angle-resolved photoemission (ARPES) data on LiFeAs, we analyze the temperature, frequency, and momentum dependencies of quasiparticle interference (QPI) to identify gap sign changes in a qualitative way, following our original proposal [Phys. Rev. B 92, 184513 (2015)]. We show that all features present for the simple two-band model for the sign-changing $s_{+-}$-wave superconducting gap employed previously are still present in the realistic tight-binding approximation and gap values observed experimentally. We discuss various superconducting gap structures proposed for LiFeAs, and identify various features of these superconducting gaps functions in the quasiparticle interference patterns. On the other hand, we show that it will be difficult to identify the more complicated possible sign structures of the hole pocket gaps in LiFeAs, due to the smallness of the pockets and the near proximity of two of the gap energies.
100 - A. F. Fang , R. Zhou , H. Tukada 2021
Identifying the uniqueness of FeP-based superconductors may shed new lights on the mechanism of superconductivity in iron-pnictides. Here, we report nuclear magnetic resonance(NMR) studies on LiFeP and LiFeAs which have the same crystal structure but different pnictogen atoms. The NMR spectrum is sensitive to inhomogeneous magnetic fields in the vortex state and can provide the information on the superconducting pairing symmetry through the temperature dependence of London penetration depth $lambda_L$. We find that $lambda_L$ saturates below $T sim 0.2$ $T_c$ in LiFeAs, where $T_c$ is the superconducting transition temperature, indicating nodeless superconducting gaps. Furthermore, by using a two-gaps model, we simulate the temperature dependence of $lambda_L$ and obtain the superconducting gaps of LiFeAs, as $Delta_1 = 1.2$ $k_B T_c$ and $Delta_2 = 2.8$ $k_B T_c$, in agreement with previous result from spin-lattice relaxation. For LiFeP, in contrast, the London penetration depth $lambda_L$ does not show any saturation down to $T sim 0.03 $ $T_c$, indicating nodes in the superconducting energy gap function. Finally, we demonstrate that the strong spin fluctuations with diffusive characteristics exist in LiFeP, as in some cuprate high temperature superconductors.
We performed a Laser angle-resolved photoemission spectroscopy (ARPES) study on a wide doping range of Ba1-xKxFe2As2 (BaK) and precisely determined the doping evolution of the superconducting (SC) gaps in this compound. The gap size of the outer hole Fermi surface (FS) sheet around the Brillioun zone (BZ) center shows an abrupt drop with overdoping (for x > 0.6) while the inner and middle FS gaps roughly scale with Tc. This is accompanied by the simultaneous disappearance of the electron FS sheet with similar orbital character at the BZ corner. These results browse the different contributions of X2-Y2 and XZ/YZ orbitals to superconductivity in BaK and can be hardly completely reproduced by the available theories on iron-based superconductors.
We report specific heat capacity measurements on a LiFeAs single crystal at temperatures down to 400 mK and magnetic fields up to 9 Tesla. A small specific heat jump at Tc and finite residual density of states at T=0 K in the superconducting (SC) sta te indicate that there are strong unitary scatterers that lead to states within the SC gap. A sub-linear magnetic field dependence of the Sommerfeld coefficient gamma(H) at T=0 K is equally well fitted by both a nodal d-wave gap as well as a sign changing multiband pm s-wave gap. When impurity effects are taken into account, however, the linear temperature dependence of the electronic specific heat C_{el}/T at low temperatures argues against a nodal d-wave superconducting gap. We conclude that the SC state of LiFeAs is most compatible with the multiband pm s-wave SC state with the gap values Delta_{small}=0.46 Delta_{large}.
Several angle resolved photoemission spectroscopy (ARPES) studies reveal a poorly nested Fermi surface of LiFeAs, far away from a spin density wave instability, and clear-cut superconducting gap anisotropies. On the other hand a very different, more nested Fermi surface and dissimilar gap anisotropies have been obtained from quasiparticle interference (QPI) data, which were interpreted as arising from intraband scattering within hole-like bands. Here we show that this ARPES-QPI paradox is completely resolved by interband scattering between the hole-like bands. The resolution follows from an excellent agreement between experimental quasiparticle scattering data and T-matrix QPI calculations (based on experimental band structure data), which allows disentangling interband and intraband scattering processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا