ﻻ يوجد ملخص باللغة العربية
We propose an algebraic form for the density of states of quarks and gluons in a Quark-Gluon Plasma (QGP) fireball in quasi-equilibrium with a hadronic medium as $rho(k)= frac {alpha}{k} + {beta}k + {delta}k^{2}$, and determine the parameters $alpha$, $beta$ and $delta$ using Lattice Gauge results on the velocity of sound in QGP. The behaviour of the resulting $rho(k)$ can be easily compared with the thermodynamic data on QGP that is expected from LHC and other RHIC experiments. Our numerical result shows a linear rise of the value of $rho(k)$ for $ksim T approx 160 to 180 MeV$, which is significant, and throws light on the evolution of the QGP phase.
A general approach to the construction of bound states in quantum field theory, called the renormalization group procedure for effective particles (RGPEP), was applied recently to single heavy-flavor QCD in order to study its utility beyond illustrat
In this review article, we develop the perturbative framework for the calculation of hard scattering processes. We undertake to provide both a reasonably rigorous development of the formalism of hard scattering of quarks and gluons as well as an intu
We use perturbation theory to construct perfect lattice actions for quarks and gluons. The renormalized trajectory for free massive quarks is identified by blocking directly from the continuum. We tune a parameter in the renormalization group transfo
The collisional energy gain of a heavy quark due to chromo-electromagnetic field fluctuations in a quark-gluon plasma is investigated. The field fluctuations lead to an energy gain of the quark for all temperatures and velocities. The net effect is a
We propose a simple statistical model for the density of states for quarks and gluons in a QGP droplet, making the Thomas-Fermi model of the atom and the Bethe-model for the nucleons as templates for constructing the density of states for the quarks