ﻻ يوجد ملخص باللغة العربية
We propose a simple statistical model for the density of states for quarks and gluons in a QGP droplet, making the Thomas-Fermi model of the atom and the Bethe-model for the nucleons as templates for constructing the density of states for the quarks and gluons with due modifications for the `hot relativistic QGP state as against the `cold non-relativistic atom and nucleons, which were the subject of the earlier `forebears of the present proposal.We introduce `flow-parameters $gamma_{q,g}$ for the quarks and the gluons to take care of the hydrodynamical (plasma) flows in the QGP system as was done earlier by Peshier in his thermal potential for the QGP. By varying $gamma_{g}$ about the `Peshier-Value of $gamma_{q} = 1/6$, we find that the model allows a window in the parametric space in the range $8gamma_{q} leq gamma_{g} leq 12gamma_{q}$, with $gamma_{q} =1/6$ (Peshier-Value), when stable QGP droplets of radii $sim$ $6 fm$ appear at transition temperatures $100 MeV leq T leq 250 MeV$. The smooth cut at the phase boundary of the Free energy vs. droplet radius suggests a First - Order phase transition .On the whole the model offers a robust tool for studying QGP phenomenology as and when data from various ongoing experiments are available .
We construct the density of states for quarks and gluons using the `Thomas - Fermi model for atoms and the `Bethe model for nucleons as templates. With parameters to take care of the plasma (hydrodynamical) features of the QGP with a thermal potentia
The simple 3-3-1 model that contains the minimal lepton and minimal scalar contents is detailedly studied. The impact of the inert scalars (i.e., the extra fundamental fields that provide realistic dark matter candidates) on the model is discussed. A
We study the phase structure of the QGP-Hadron system under quasi-static equilibrium using the Ramanathan et al. statistical model for the QGP fireball formation in a hadronic medium. While in the earlier published studies we had used the Peshier eff
We study the effect of finite chemical potential for the QGP constituents in the Ramanathan et al. statistical model (Phys.Rev.C70, 027903,2004). While the earlier computations using this model with vanishing chemical potentials indicated a weakly fi
We propose an algebraic form for the density of states of quarks and gluons in a Quark-Gluon Plasma (QGP) fireball in quasi-equilibrium with a hadronic medium as $rho(k)= frac {alpha}{k} + {beta}k + {delta}k^{2}$, and determine the parameters $alpha$