ترغب بنشر مسار تعليمي؟ اضغط هنا

Wall-crossing of the motivic Donaldson-Thomas invariants

190   0   0.0 ( 0 )
 نشر من قبل Kentaro Nagao
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Kentaro Nagao




اسأل ChatGPT حول البحث

We study motivic Donaldson-Thomas invariants in the sense of Behrend-Bryan-Szendroi. A wall-crossing formula under a mutation is proved for a certain class of quivers with potentials.



قيم البحث

اقرأ أيضاً

We compute the motivic Donaldson-Thomas theory of small crepant resolutions of toric Calabi-Yau 3-folds.
165 - Kentaro Nagao 2010
We study higher rank Donaldson-Thomas invariants of a Calabi-Yau 3-fold using Joyce-Songs wall-crossing formula. We construct quivers whose counting invariants coincide with the Donaldson-Thomas invariants. As a corollary, we prove the integrality an d a certain symmetry for the higher rank invariants.
We study certain DT invariants arising from stable coherent sheaves in a nonsingular projective threefold supported on the members of a linear system of a fixed line bundle. When the canonical bundle of the threefold satisfies certain positivity cond itions, we relate the DT invariants to Carlsson-Okounkov formulas for the twisted Eulers number of the punctual Hilbert schemes of nonsingular surfaces, and conclude they have a modular property.
82 - Yalong Cao , Martijn Kool 2017
We study Hilbert schemes of points on a smooth projective Calabi-Yau 4-fold $X$. We define $mathrm{DT}_4$ invariants by integrating the Euler class of a tautological vector bundle $L^{[n]}$ against the virtual class. We conjecture a formula for their generating series, which we prove in certain cases when $L$ corresponds to a smooth divisor on $X$. A parallel equivariant conjecture for toric Calabi-Yau 4-folds is proposed. This conjecture is proved for smooth toric divisors and verified for more general toric divisors in many examples. Combining the equivariant conjecture with a vertex calculation, we find explicit positive rational weights, which can be assigned to solid partitions. The weighted generating function of solid partitions is given by $exp(M(q)-1)$, where $M(q)$ denotes the MacMahon function.
168 - Kentaro Nagao 2009
The aim of this paper is to study an analog of non-commutative Donaldson-Thomas theory corresponding to the refined topological vertex for small crepant resolutions of toric Calabi-Yau 3-folds. We define the invariants using dimer models and provide wall-crossing formulas. In particular, we get normalized generating functions which are unchanged under wall-crossing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا