ترغب بنشر مسار تعليمي؟ اضغط هنا

Donaldson-Thomas invariants, linear systems and punctual Hilbert schemes

177   0   0.0 ( 0 )
 نشر من قبل Amin Gholampour
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study certain DT invariants arising from stable coherent sheaves in a nonsingular projective threefold supported on the members of a linear system of a fixed line bundle. When the canonical bundle of the threefold satisfies certain positivity conditions, we relate the DT invariants to Carlsson-Okounkov formulas for the twisted Eulers number of the punctual Hilbert schemes of nonsingular surfaces, and conclude they have a modular property.



قيم البحث

اقرأ أيضاً

187 - Artan Sheshmani 2019
This article provides a summary of arXiv:1701.08899 and arXiv:1701.08902 where the authors studied the enumerative geometry of nested Hilbert schemes of points and curves on algebraic surfaces and their connections to threefold theories, and in parti cular relevant Donaldson-Thomas, Vafa-Witten and Seiberg-Witten theories.
154 - Kentaro Nagao 2010
We study higher rank Donaldson-Thomas invariants of a Calabi-Yau 3-fold using Joyce-Songs wall-crossing formula. We construct quivers whose counting invariants coincide with the Donaldson-Thomas invariants. As a corollary, we prove the integrality an d a certain symmetry for the higher rank invariants.
182 - Kentaro Nagao 2011
We study motivic Donaldson-Thomas invariants in the sense of Behrend-Bryan-Szendroi. A wall-crossing formula under a mutation is proved for a certain class of quivers with potentials.
We compute the motivic Donaldson-Thomas theory of small crepant resolutions of toric Calabi-Yau 3-folds.
82 - Yalong Cao , Martijn Kool 2017
We study Hilbert schemes of points on a smooth projective Calabi-Yau 4-fold $X$. We define $mathrm{DT}_4$ invariants by integrating the Euler class of a tautological vector bundle $L^{[n]}$ against the virtual class. We conjecture a formula for their generating series, which we prove in certain cases when $L$ corresponds to a smooth divisor on $X$. A parallel equivariant conjecture for toric Calabi-Yau 4-folds is proposed. This conjecture is proved for smooth toric divisors and verified for more general toric divisors in many examples. Combining the equivariant conjecture with a vertex calculation, we find explicit positive rational weights, which can be assigned to solid partitions. The weighted generating function of solid partitions is given by $exp(M(q)-1)$, where $M(q)$ denotes the MacMahon function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا