ﻻ يوجد ملخص باللغة العربية
The aim of this paper is to study an analog of non-commutative Donaldson-Thomas theory corresponding to the refined topological vertex for small crepant resolutions of toric Calabi-Yau 3-folds. We define the invariants using dimer models and provide wall-crossing formulas. In particular, we get normalized generating functions which are unchanged under wall-crossing.
We compute the motivic Donaldson-Thomas theory of small crepant resolutions of toric Calabi-Yau 3-folds.
In arXiv:0907.3784, we introduced a variant of non-commutative Donaldson-Thomas theory in a combinatorial way, which is related with topological vertex by a wall-crossing phenomenon. In this paper, we (1) provide an alternative definition in a geomet
We study Hilbert schemes of points on a smooth projective Calabi-Yau 4-fold $X$. We define $mathrm{DT}_4$ invariants by integrating the Euler class of a tautological vector bundle $L^{[n]}$ against the virtual class. We conjecture a formula for their
We study higher rank Donaldson-Thomas invariants of a Calabi-Yau 3-fold using Joyce-Songs wall-crossing formula. We construct quivers whose counting invariants coincide with the Donaldson-Thomas invariants. As a corollary, we prove the integrality an
The Abuaf-Ueda flop is a 7-dimensional flop related to $G_2$ homogeneous spaces. The derived equivalence for this flop was first proved by Ueda using mutations of semi-orthogonal decompositions. In this article, we give an alternative proof for the d