ﻻ يوجد ملخص باللغة العربية
We introduce a relative version of the spherical objects of Seidel and Thomas. Define an object E in the derived category D(Z x X) to be spherical over Z if the corresponding functor from D(Z) to D(X) gives rise to autoequivalences of D(Z) and D(X) in a certain natural way. Most known examples come from subschemes of X fibred over Z. This categorifies to the notion of an object of D(Z x X) orthogonal over Z. We prove that such an object is spherical over Z if and only if it has certain cohomological properties similar to those in the original definition of a spherical object. We then interpret this geometrically in the case when our objects are actual flat fibrations in X over Z.
For two DG-categories A and B we define the notion of a spherical Morita quasi-functor A -> B. We construct its associated autoequivalences: the twist T of D(B) and the co-twist F of D(A). We give powerful sufficiency criteria for a quasi-functor to
Let $G$ be a complex connected reductive algebraic group. Given a spherical subgroup $H subset G$ and a subset $I$ of the set of spherical roots of $G/H$, we define, up to conjugation, a spherical subgroup $H_I subset G$ of the same dimension of $H$,
We study Dehn twists along Lagrangian submanifolds that are finite quotients of spheres. We decribe the induced auto-equivalences to the derived Fukaya category and explain its relation to twists along spherical functors.
We prove that every spherical object in the derived Fukaya category of a closed surface of genus at least two whose Chern character represents a non-zero Hochschild homology class is quasi-isomorphic to a simple closed curve equipped with a rank one
A cone spherical metric is called irreducible if any developing map of the metric does not have monodromy in ${rm U(1)}$. By using the theory of indigenous bundles, we construct on a compact Riemann surface $X$ of genus $g_X geq 1$ a canonical surjec