ترغب بنشر مسار تعليمي؟ اضغط هنا

Satellites of spherical subgroups

130   0   0.0 ( 0 )
 نشر من قبل Anne Moreau
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $G$ be a complex connected reductive algebraic group. Given a spherical subgroup $H subset G$ and a subset $I$ of the set of spherical roots of $G/H$, we define, up to conjugation, a spherical subgroup $H_I subset G$ of the same dimension of $H$, called a satellite. We investigate various interpretations of the satellites. We also show a close relation between the Poincar{e} polynomials of the two spherical homogeneous spaces $G/H$ and $G/H_I$.



قيم البحث

اقرأ أيضاً

86 - Vincent Beck 2017
This article extends the works of Gonc{c}alves, Guaschi, Ocampo [GGO] and Marin [MAR2] on finite subgroups of the quotients of generalized braid groups by the derived subgroup of their pure braid group. We get explicit criteria for subgroups of the ( complex) reflection group to lift to subgroups of this quotient. In the specific case of the classical braid group, this enables us to describe all its finite subgroups : we show that every odd-order finite group can be embedded in it, when the number of strands goes to infinity. We also determine a complete list of the irreducible reflection groups for which this quotient is a Bieberbach group.
We study a relative variant of Serres notion of $G$-complete reducibility for a reductive algebraic group $G$. We let $K$ be a reductive subgroup of $G$, and consider subgroups of $G$ which normalise the identity component $K^{circ}$. We show that su ch a subgroup is relatively $G$-completely reducible with respect to $K$ if and only if its image in the automorphism group of $K^{circ}$ is completely reducible. This allows us to generalise a number of fundamental results from the absolute to the relative setting. We also derive analogous results for Lie subalgebras of the Lie algebra of $G$, as well as rationa
Motivated in part by representation theoretic questions, we prove that if G is a finite quasi-simple group, then there exists an elementary abelian subgroup of G that intersects every conjugacy class of involutions of G.
We introduce a relative version of the spherical objects of Seidel and Thomas. Define an object E in the derived category D(Z x X) to be spherical over Z if the corresponding functor from D(Z) to D(X) gives rise to autoequivalences of D(Z) and D(X) i n a certain natural way. Most known examples come from subschemes of X fibred over Z. This categorifies to the notion of an object of D(Z x X) orthogonal over Z. We prove that such an object is spherical over Z if and only if it has certain cohomological properties similar to those in the original definition of a spherical object. We then interpret this geometrically in the case when our objects are actual flat fibrations in X over Z.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا