ﻻ يوجد ملخص باللغة العربية
A cone spherical metric is called irreducible if any developing map of the metric does not have monodromy in ${rm U(1)}$. By using the theory of indigenous bundles, we construct on a compact Riemann surface $X$ of genus $g_X geq 1$ a canonical surjective map from the moduli space of stable extensions of two line bundles to that of irreducible metrics with cone angles in $2 pi mathbb{Z}_{>1}$, which is generically injective in the algebro-geometric sense as $g_X geq 2$. As an application, we prove the following two results about irreducible metrics: $bullet$ as $g_X geq 2$ and $d$ is even and greater than $12g_X - 7$, the effective divisors of degree $d$ which could be represented by irreducible metrics form an arcwise connected Borel subset of Hausdorff dimension $geq 2(d+3-3g_X)$ in ${rm Sym}^d(X)$; $bullet$ as $g_X geq 1$, for almost every effective divisor $D$ of degree odd and greater than $2g_X-2$ on $X$, there exist finitely many cone spherical metrics representing $D$.
For any two nef line bundles F and G on a toric variety X represented by lattice polyhedra P respectively Q, we present the universal equivariant extension of G by F under use of the connected components of the set theoretic difference of Q and P.
We define and study the existence of very stable Higgs bundles on Riemann surfaces, how it implies a precise formula for the multiplicity of the very stable components of the global nilpotent cone and its relationship to mirror symmetry. The main ing
Cone spherical metrics are conformal metrics with constant curvature one and finitely many conical singularities on compact Riemann surfaces. By using Strebel differentials as a bridge, we construct a new class of cone spherical metrics on compact Ri
These are the lecture notes from my course in the January 2011 School on Moduli Spaces at the Newton Institute. I give an introduction to Higgs bundles and their application to the study of character varieties for surface group representations.
We prove several results concerning the intersection cohomology and the perverse filtration associated with a Lagrangian fibration of an irreducible symplectic variety. We first show that the perverse numbers only depend on the deformation equivalenc