ﻻ يوجد ملخص باللغة العربية
For open quantum systems coupled to a thermal bath at inverse temperature $beta$, it is well known that under the Born-, Markov-, and secular approximations the system density matrix will approach the thermal Gibbs state with the bath inverse temperature $beta$. We generalize this to systems where there exists a conserved quantity (e.g., the total particle number), where for a bath characterized by inverse temperature $beta$ and chemical potential $mu$ we find equilibration of both temperature and chemical potential. For couplings to multiple baths held at different temperatures and different chemical potentials, we identify a class of systems that equilibrates according to a single hypothetical average but in general non-thermal bath, which may be exploited to generate desired non-thermal states. Under special circumstances the stationary state may be again be described by a unique Boltzmann factor. These results are illustrated by several examples.
We show that the physical mechanism for the equilibration of closed quantum systems is dephasing, and identify the energy scales that determine the equilibration timescale of a given observable. For realistic physical systems (e.g those with local Ha
We study equilibration of an isolated quantum system by mapping it onto a network of classical oscillators in Hilbert space. By choosing a suitable basis for this mapping, the degree of locality of the quantum system reflects in the sparseness of the
Modern quantum experiments provide examples of transport with non-commuting quantities, offering a tool to understand the interplay between thermal and quantum effects. Here we set forth a theory for non-Abelian transport in the linear response regim
There is a renewed interest in the derivation of statistical mechanics from the dynamics of closed quantum systems. A central part of this program is to understand how far-from-equilibrium closed quantum system can behave as if relaxing to a stable e
One of the general mechanisms that give rise to the slow cooperative relaxation characteristic of classical glasses is the presence of kinetic constraints in the dynamics. Here we show that dynamical constraints can similarly lead to slow thermalizat