ﻻ يوجد ملخص باللغة العربية
One of the general mechanisms that give rise to the slow cooperative relaxation characteristic of classical glasses is the presence of kinetic constraints in the dynamics. Here we show that dynamical constraints can similarly lead to slow thermalization and metastability in translationally invariant quantum many-body systems. We illustrate this general idea by considering two simple models: (i) a one-dimensional quantum analogue to classical constrained lattice gases where excitation hopping is constrained by the state of neighboring sites, mimicking excluded-volume interactions of dense fluids; and (ii) fully packed quantum dimers on the square lattice. Both models have a Rokhsar--Kivelson (RK) point at which kinetic and potential energy constants are equal. To one side of the RK point, where kinetic energy dominates, thermalization is fast. To the other, where potential energy dominates, thermalization is slow, memory of initial conditions persists for long times, and separation of timescales leads to pronounced metastability before eventual thermalization. Furthermore, in analogy with what occurs in the relaxation of classical glasses, the slow-thermalization regime displays dynamical heterogeneity as manifested by spatially segregated growth of entanglement.
A new discrete model for energy relaxation of a quantum particle is described via a projection operator, causing the wave function collapse. Power laws for the evolution of the particle coordinate and momentum dispersions are derived. A new dissipati
Long lived quasi-stationary states (QSSs) are a signature characteristic of long-range interacting systems both in the classical and in the quantum realms. Often, they emerge after a sudden quench of the Hamiltonian internal parameters and present a
For open quantum systems coupled to a thermal bath at inverse temperature $beta$, it is well known that under the Born-, Markov-, and secular approximations the system density matrix will approach the thermal Gibbs state with the bath inverse tempera
Thermodynamics is a theory of equilibrium transformations, but quantum dynamics are inherently out-of-equilibrium. It remains an open problem to show how the two theories are consistent with each other. Here we extend the ideas of pure state quantum
Phase transitions have recently been formulated in the time domain of quantum many-body systems, a phenomenon dubbed dynamical quantum phase transitions (DQPTs), whose phenomenology is often divided in two types. One refers to distinct phases accordi