ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical Lieb-Robinson Bound for Estimating Equilibration Timescales of Isolated Quantum Systems

193   0   0.0 ( 0 )
 نشر من قبل Michael Kastner
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study equilibration of an isolated quantum system by mapping it onto a network of classical oscillators in Hilbert space. By choosing a suitable basis for this mapping, the degree of locality of the quantum system reflects in the sparseness of the network. We derive a Lieb-Robinson bound on the speed of propagation across the classical network, which allows us to estimate the timescale at which the quantum system equilibrates. The bound contains a parameter that quantifies the degree of locality of the Hamiltonian and the observable. Locality was disregarded in earlier studies of equilibration times, and is believed to be a key ingredient for making contact with the majority of physically realistic models. The more local the Hamiltonian and observables, the longer the equilibration timescale predicted by the bound.



قيم البحث

اقرأ أيضاً

We state and prove four types of Lieb-Robinson bounds valid for many-body open quantum systems with power law decaying interactions undergoing out of equilibrium dynamics. We also provide an introductory and self-contained discussion of the setting a nd tools necessary to prove these results. The results found here apply to physical systems in which both long-ranged interactions and dissipation are present, as commonly encountered in certain quantum simulators, such as Rydberg systems or Coulomb crystals formed by ions.
We extend the concept of locality to enclose a situation where a tensor-product structure for the Hilbert space is not textit {a priori} assumed; rather, this locality is related to a given matrix representation of the Hamiltonian associated to the s ystem. As a result, we formulate a Lieb-Robinson-like bound for Hamiltonians local in a given basis. In particular, we employ this bound to obtain alternatively the adiabatic condition, where adiabaticity is naturally ensued from a locality in energy basis and a relatively small Lieb-Robinson bound.
82 - Fabio Anza 2018
The unitary dynamics of isolated quantum systems does not allow a pure state to thermalize. Because of that, if an isolated quantum system equilibrates, it will do so to the predictions of the so-called diagonal ensemble $rho_{DE}$. Building on the i ntuition provided by Jaynes maximum entropy principle, in this paper we present a novel technique to generate progressively better approximations to $rho_{DE}$. As an example, we write down a hierarchical set of ensembles which can be used to describe the equilibrium physics of small isolated quantum systems, going beyond the thermal ansatz of Gibbs ensembles.
We show that the physical mechanism for the equilibration of closed quantum systems is dephasing, and identify the energy scales that determine the equilibration timescale of a given observable. For realistic physical systems (e.g those with local Ha miltonians), our arguments imply timescales that do not increase with the system size, in contrast to previously known upper bounds. In particular we show that, for such Hamiltonians, the matrix representation of local observables in the energy basis is banded, and that this property is crucial in order to derive equilibration times that are non-negligible in macroscopic systems. Finally, we give an intuitive interpretation to recent theorems on equilibration time-scale.
Discrete lattice models are a cornerstone of quantum many-body physics. They arise as effective descriptions of condensed matter systems and lattice-regularized quantum field theories. Lieb-Robinson bounds imply that if the degrees of freedom at each lattice site only interact locally with each other, correlations can only propagate with a finite group velocity through the lattice, similarly to a light cone in relativistic systems. Here we show that Lieb-Robinson bounds are equivalent to the locality of the interactions: a system with k-body interactions fulfills Lieb-Robinson bounds in exponential form if and only if the underlying interactions decay exponentially in space. In particular, our result already follows from the behavior of two-point correlation functions for single-site observables and generalizes to different decay behaviours as well as fermionic lattice models. As a side-result, we thus find that Lieb-Robinson bounds for single-site observables imply Lieb-Robinson bounds for bounded observables with arbitrary support.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا