ﻻ يوجد ملخص باللغة العربية
We study equilibration of an isolated quantum system by mapping it onto a network of classical oscillators in Hilbert space. By choosing a suitable basis for this mapping, the degree of locality of the quantum system reflects in the sparseness of the network. We derive a Lieb-Robinson bound on the speed of propagation across the classical network, which allows us to estimate the timescale at which the quantum system equilibrates. The bound contains a parameter that quantifies the degree of locality of the Hamiltonian and the observable. Locality was disregarded in earlier studies of equilibration times, and is believed to be a key ingredient for making contact with the majority of physically realistic models. The more local the Hamiltonian and observables, the longer the equilibration timescale predicted by the bound.
We state and prove four types of Lieb-Robinson bounds valid for many-body open quantum systems with power law decaying interactions undergoing out of equilibrium dynamics. We also provide an introductory and self-contained discussion of the setting a
We extend the concept of locality to enclose a situation where a tensor-product structure for the Hilbert space is not textit {a priori} assumed; rather, this locality is related to a given matrix representation of the Hamiltonian associated to the s
The unitary dynamics of isolated quantum systems does not allow a pure state to thermalize. Because of that, if an isolated quantum system equilibrates, it will do so to the predictions of the so-called diagonal ensemble $rho_{DE}$. Building on the i
We show that the physical mechanism for the equilibration of closed quantum systems is dephasing, and identify the energy scales that determine the equilibration timescale of a given observable. For realistic physical systems (e.g those with local Ha
Discrete lattice models are a cornerstone of quantum many-body physics. They arise as effective descriptions of condensed matter systems and lattice-regularized quantum field theories. Lieb-Robinson bounds imply that if the degrees of freedom at each