ﻻ يوجد ملخص باللغة العربية
We study the phase structure of the QGP-Hadron system under quasi-static equilibrium using the Ramanathan et al. statistical model for the QGP fireball formation in a hadronic medium. While in the earlier published studies we had used the Peshier effective potential which is appropriate for the deconfined QGP phase but could be extrapolated to the transition region from the higher momentum regime, in this paper we study the same system using the Cornell and Richardson potentials which are more relevant for the low momentum confinement regime, but could again be extrapolated to the transition region from below. Surprisingly, the overall picture in both the cases are quite similar with minor divergences,(though,the results with the Richardson potential shows a sizable deviation from the other two potentials), thus indicating the robustness of the model and its self-consistency. The result of our numerical results pertaining to the variation of the velocity of sound in the QGP-Hadron medium with temperature in the various scenarios considered by us, is that, the phase transition seems to be a gentle roll-over of phases rather than a sharp transition of either the first or second order, a result in conformity with recent lattice calculations, but with much less effort.
We study the effect of finite chemical potential for the QGP constituents in the Ramanathan et al. statistical model (Phys.Rev.C70, 027903,2004). While the earlier computations using this model with vanishing chemical potentials indicated a weakly fi
We propose a simple statistical model for the density of states for quarks and gluons in a QGP droplet, making the Thomas-Fermi model of the atom and the Bethe-model for the nucleons as templates for constructing the density of states for the quarks
We construct the density of states for quarks and gluons using the `Thomas - Fermi model for atoms and the `Bethe model for nucleons as templates. With parameters to take care of the plasma (hydrodynamical) features of the QGP with a thermal potentia
We describe how the abundance and distribution of hyperon resonances can be used to probe freeze-out conditions. We demonstrate that resonance yields allow us to measure the time scales of chemical and thermal freeze-outs. This should permit a direct
We propose an algebraic form for the density of states of quarks and gluons in a Quark-Gluon Plasma (QGP) fireball in quasi-equilibrium with a hadronic medium as $rho(k)= frac {alpha}{k} + {beta}k + {delta}k^{2}$, and determine the parameters $alpha$