ﻻ يوجد ملخص باللغة العربية
The resistive transition of granular high-T$_c$ superconductors, characterized by either weak (YBCO-like) or strong (MgB$_2$-like) links, occurs through a series of avalanche-type current density rearrangements. These rearrangements correspond to the creation of resistive layers, crossing the whole specimen approximately orthogonal to the current density direction, due to the simultaneous transition of a large number of weak-links or grains. The present work shows that exact solution of the Kirchhoff equations for strongly and weakly linked networks of nonlinear resistors, with Josephson junction characteristics, yield the subsequent formation of resistive layers within the superconductive matrix as temperature increases. Furthermore, the voltage noise observed at the transition is related to the resistive layer formation process. The noise intensity is estimated from the superposition of voltage drop elementary events related to the subsequent resistive layers. At the end of the transition, the layers mix-up, the step amplitude decreases and the resistance curve smoothes. This results in the suppression of noise, as experimentally found. Remarkably, a scaling law for the noise intensity with the network size is argued. It allows to extend the results to networks with arbitrary size and, thus, to real specimens.
The effect of disorder is investigated in granular superconductive materials with strong and weak links. The transition is controlled by the interplay of the emph{tunneling} $g$ and emph{intragrain} $g_{intr}$ conductances, which depend on the streng
A universal phase diagram for weakly pinned low-T$_c$ type-II superconductors is revisited and extended with new proposals. The low-temperature ``Bragg glass phase is argued to transform first into a disordered, glassy phase upon heating. This glassy
Isolated islands in two-dimensional strongly-disordered and strongly-coupled superconductors become optically active inducing sub-gap collective excitations in the ac conductivity. Here, we investigate the fate of these excitations as a function of t
In this work we report a systematic study of electrical current effects on superconducting properties of granular Y$_{1-x}$Pr$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-delta}$ samples with x close to the critical Pr concentration above which the superconductivity v
We consider a weakly interacting two-component Fermi gas of dipolar particles (magnetic atoms or polar molecules) in the two-dimensional geometry. The dipole-dipole interaction (together with the short-range interaction at Feshbach resonances) for di