ترغب بنشر مسار تعليمي؟ اضغط هنا

Current-Induced Superconductor-Insulator Transition in Granular High-T_c Superconductors

225   0   0.0 ( 0 )
 نشر من قبل Yakov Kopelevich
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we report a systematic study of electrical current effects on superconducting properties of granular Y$_{1-x}$Pr$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-delta}$ samples with x close to the critical Pr concentration above which the superconductivity vanishes. The results indicate the occurrence of superconductor-insulator quantum phase transition (SIT) driven by the applied electrical current, and suggest that the current-induced SIT can be considered as the dynamical counterpart of the magnetic-field- tuned SIT.



قيم البحث

اقرأ أيضاً

104 - Y. Imry , M. Strongin , 2012
Following a short discussion of the granular model for an inhomogeneous superconductor, we review the Uemura and Homes correlations and show how both follow in two limits of a simple granular superconductor model. Definite expressions are given for t he almost universal coefficients appearing in these relationships in terms of known constants.
81 - J. Wosnitza 2000
The quasi-two-dimensional organic superconductor beta-(BEDT-TTF)_2SF_5CH_2CF_2SO_3 (T_c approx 4.4 K)shows very strong Shubnikov-de Haas (SdH) oscillations which are superimposed on a highly anomalous steady background magnetoresistance, R_b. Compari son with de Haas- van Alphen oscillations allow a reliable estimate of R_b which is crucial for the correct extraction of the SdH signal. At low temperatures and high magnetic fields insulating behavior evolves. The magnetoresistance data violate Kohlers rule, i.e., cannot be described within the framework of semiclassical transport theory, but converge onto a universal curve appropriate for dynamical scaling at a metal-insulator transition.
353 - L. Ponta , A. Carbone , M. Gilli 2009
The resistive transition of granular high-T$_c$ superconductors, characterized by either weak (YBCO-like) or strong (MgB$_2$-like) links, occurs through a series of avalanche-type current density rearrangements. These rearrangements correspond to the creation of resistive layers, crossing the whole specimen approximately orthogonal to the current density direction, due to the simultaneous transition of a large number of weak-links or grains. The present work shows that exact solution of the Kirchhoff equations for strongly and weakly linked networks of nonlinear resistors, with Josephson junction characteristics, yield the subsequent formation of resistive layers within the superconductive matrix as temperature increases. Furthermore, the voltage noise observed at the transition is related to the resistive layer formation process. The noise intensity is estimated from the superposition of voltage drop elementary events related to the subsequent resistive layers. At the end of the transition, the layers mix-up, the step amplitude decreases and the resistance curve smoothes. This results in the suppression of noise, as experimentally found. Remarkably, a scaling law for the noise intensity with the network size is argued. It allows to extend the results to networks with arbitrary size and, thus, to real specimens.
91 - In-Ho Lee 2001
The notion of a finite pairing interaction energy range suggested by Nam, results in some states at the Fermi level not participating in pairings when there are scattering centers such as impurities. The fact that not all states at the Fermi level pa rticipate in pairing is shown to suppress $T_c$ in an isotropic superconductor and destroy superconductivity. We have presented quantitative calculations of $T_c$ reduced via spinless impurities, in good agreements with data of Zn-doped YBCO and LSCO, respectively. It is not necessary to have the anisotropic order parameter, to account for the destruction of superconductivity via non-magnetic impurities.
198 - M. Einenkel , H. Meier , C. Pepin 2014
We theoretically investigate the vortex state of the cuprate high-temperature superconductors in the presence of magnetic fields. Assuming the recently derived nonlinear $sigma$-model for fluctuations in the pseudogap phase, we find that the vortex c ores consist of two crossed regions of elliptic shape, in which a static charge order emerges. Charge density wave order manifests itself as satellites to the ordinary Bragg peaks directed along the axes of the reciprocal copper lattice. Quadrupole density wave (bond order) satellites, if seen, are predicted to be along the diagonals. The intensity of the satellites should grow linearly with the magnetic field, in agreement with the result of recent experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا