ﻻ يوجد ملخص باللغة العربية
In this work we report a systematic study of electrical current effects on superconducting properties of granular Y$_{1-x}$Pr$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-delta}$ samples with x close to the critical Pr concentration above which the superconductivity vanishes. The results indicate the occurrence of superconductor-insulator quantum phase transition (SIT) driven by the applied electrical current, and suggest that the current-induced SIT can be considered as the dynamical counterpart of the magnetic-field- tuned SIT.
Following a short discussion of the granular model for an inhomogeneous superconductor, we review the Uemura and Homes correlations and show how both follow in two limits of a simple granular superconductor model. Definite expressions are given for t
The quasi-two-dimensional organic superconductor beta-(BEDT-TTF)_2SF_5CH_2CF_2SO_3 (T_c approx 4.4 K)shows very strong Shubnikov-de Haas (SdH) oscillations which are superimposed on a highly anomalous steady background magnetoresistance, R_b. Compari
The resistive transition of granular high-T$_c$ superconductors, characterized by either weak (YBCO-like) or strong (MgB$_2$-like) links, occurs through a series of avalanche-type current density rearrangements. These rearrangements correspond to the
The notion of a finite pairing interaction energy range suggested by Nam, results in some states at the Fermi level not participating in pairings when there are scattering centers such as impurities. The fact that not all states at the Fermi level pa
We theoretically investigate the vortex state of the cuprate high-temperature superconductors in the presence of magnetic fields. Assuming the recently derived nonlinear $sigma$-model for fluctuations in the pseudogap phase, we find that the vortex c