ترغب بنشر مسار تعليمي؟ اضغط هنا

Resistive transition in disordered superconductors with varying intergrain coupling

163   0   0.0 ( 0 )
 نشر من قبل Linda Ponta
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of disorder is investigated in granular superconductive materials with strong and weak links. The transition is controlled by the interplay of the emph{tunneling} $g$ and emph{intragrain} $g_{intr}$ conductances, which depend on the strength of the intergrain coupling. For $g ll g_{intr}$, the transition involves first the grain boundary, while for $g sim g_{intr}$ the transition occurs into the whole grain. The different intergrain coupling is considered by modelling the superconducting material as a disordered network of Josephson junctions. Numerical simulations show that on increasing the disorder, the resistive transition occurs for lower temperatures and the curve broadens. These features are enhanced in disordered superconductors with strong links. The different behaviour is further checked by estimating the average network resistance for weak and strong links in the framework of the effective medium approximation theory. These results may be relevant to shed light on long standing puzzles as: (i) enhancement of the superconducting transition temperature of many metals in the granular states; (ii) suppression of superconductivity in homogeneously disordered films compared to standard granular systems close to the metal-insulator transition; (iii) enhanced degradation of superconductivity by doping and impurities in strongly linked materials, such as magnesium diboride, compared to weakly-linked superconductors, such as cuprates.



قيم البحث

اقرأ أيضاً

371 - L. Ponta , A. Carbone , M. Gilli 2009
The resistive transition of granular high-T$_c$ superconductors, characterized by either weak (YBCO-like) or strong (MgB$_2$-like) links, occurs through a series of avalanche-type current density rearrangements. These rearrangements correspond to the creation of resistive layers, crossing the whole specimen approximately orthogonal to the current density direction, due to the simultaneous transition of a large number of weak-links or grains. The present work shows that exact solution of the Kirchhoff equations for strongly and weakly linked networks of nonlinear resistors, with Josephson junction characteristics, yield the subsequent formation of resistive layers within the superconductive matrix as temperature increases. Furthermore, the voltage noise observed at the transition is related to the resistive layer formation process. The noise intensity is estimated from the superposition of voltage drop elementary events related to the subsequent resistive layers. At the end of the transition, the layers mix-up, the step amplitude decreases and the resistance curve smoothes. This results in the suppression of noise, as experimentally found. Remarkably, a scaling law for the noise intensity with the network size is argued. It allows to extend the results to networks with arbitrary size and, thus, to real specimens.
Isolated islands in two-dimensional strongly-disordered and strongly-coupled superconductors become optically active inducing sub-gap collective excitations in the ac conductivity. Here, we investigate the fate of these excitations as a function of t he disorder strength in the experimentally relevant case of weak electron-phonon coupling. An explicit calculation of the ac conductivity, that includes vertex corrections to restore gauge symmetry, reveals the existence of collective sub-gap excitations, related to phase fluctuations and therefore identified as the Goldstone modes, for intermediate to strong disorder. As disorder increases, the shape of the sub-gap excitation transits from peaked close to the spectral gap to a broader distribution reaching much smaller frequencies. Phase-coherence still holds in part of this disorder regime. The requirement to observe sub-gap excitations is not the existence of isolated islands acting as nano-antennas but rather the combination of a sufficiently inhomogeneous order parameter with a phase fluctuation correlation length smaller than the system size. Our results indicate that, by tuning disorder, the Goldstone mode may be observed experimentally in metallic superconductors based for instance on Al, Sn, Pb or Nb.
We consider a weakly interacting two-component Fermi gas of dipolar particles (magnetic atoms or polar molecules) in the two-dimensional geometry. The dipole-dipole interaction (together with the short-range interaction at Feshbach resonances) for di poles perpendicular to the plane of translational motion may provide a superfluid transition. The dipole-dipole scattering amplitude is momentum dependent, which violates the Anderson theorem claiming the independence of the transition temperature on the presence of weak disorder. We have shown that the disorder can strongly increase the critical temperature (up to 10 nK at realistic densities). This opens wide possibilities for the studies of the superfluid regime in weakly interacting Fermi gases, which was not observed so far.
We investigate the effect of thermal fluctuations on the two-particle spectral function for a disordered $s$-wave superconductor in two dimensions, focusing on the evolution of the collective amplitude and phase modes. We find three main effects of t hermal fluctuations: (a) the phase mode is softened with increasing temperature reflecting the decrease of superfluid stiffness; (b) remarkably, the non-dispersive collective amplitude modes at finite energy near ${bf q}=[0,0]$ and ${bf q}=[pi,pi]$ survive even in presence of thermal fluctuations in the disordered superconductor; and (c) the scattering of the thermally excited fermionic quasiparticles leads to low energy incoherent spectral weight that forms a strongly momentum-dependent background halo around the phase and amplitude collective modes and broadens them. Due to momentum and energy conservation constraints, this halo has a boundary which disperses linearly at low momenta and shows a strong dip near the $[pi,pi]$ point in the Brillouin zone.
The superconducting-insulator transition is simulated in disordered networks of Josephson junctions with thermally activated Arrhenius-like resistive shunt. By solving the conductance matrix of the network, the transition is reproduced in different e xperimental conditions by tuning thickness, charge density and disorder degree. In particular, on increasing fluctuations of the parameters entering the Josephson coupling and the Coulomb energy of the junctions, the transition occurs for decreasing values of the critical temperature Tc and increasing values of the activation temperature To. The results of the simulation compare well with recent experiments where the mesoscopic fluctuations of the phase have been suggested as the mechanism underlying the phenomenon of emergent granularity in otherwise homogeneous films. The proposed approach is compared with the results obtained on TiN films and nanopatterned arrays of weak-links, where the superconductor-insulator transition is directly stimulated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا