The Fermi and Rashba energies of surface states in the Bi_xPb_{1-x}/Ag(111) alloy can be tuned simultaneously by changing the composition parameter x. We report on unconventional Fermi surface spin textures observed by spin and angle-resolved photoemission spectroscopy {that are correlated with a topological transition of the Fermi surface occurring at x=0.5. We show that the surface states remain fully spin polarized upon alloying and that the spin polarization vectors are approximately tangential to the constant energy contours. We discuss the implications of the topological transition for the transport of spin.
By detailed first-principles calculations we show that the Fermi energy and the Rashba splitting in disordered ternary surface alloys (BiPbSb)/Ag(111) can be independently tuned by choosing the concentrations of Bi and Pb. The findings are explained
by three fundamental mechanisms, namely the relaxation of the adatoms, the strength of the atomic spin-orbit coupling, and band filling. By mapping the Rashba characteristics,i.e.the splitting and the Rashba energy, and the Fermi energy of the surface states in the complete range of concentrations. Our results suggest to investigate experimentally effects which rely on the Rashba spin-orbit coupling in dependence on spin-orbit splitting and band filling.
Spin-split Rashba bands have been exploited to efficiently control the spin degree of freedom of moving electrons, which possesses a great potential in frontier applications of designing spintronic devices and processing spin-based information. Given
that intrinsic breaking of inversion symmetry and sizeable spin-orbit interaction, two-dimensional (2D) surface alloys formed by heavy metal elements exhibit a pronounced Rashba-type spin splitting of the surface states. Here, we have revealed the essential role of atomic orbital symmetry in the hexagonally warped Rashba spin-split surface state of $sqrt{3}timessqrt{3} R30^{circ}$ BiCu$_{2}$ monatomic alloy by scanning tunneling spectroscopy (STS) and density functional theory (DFT). From $mathrm{d}I/mathrm{d}U$ spectra and calculated band structures, three hole-like Rashba-split bands hybridized from distinct orbital symmetries have been identified in the unoccupied energy region. Because of the hexagonally deformed Fermi surface, quasi-particle interference (QPI) mappings have resolved scattering channels opened from interband transitions of textit{p$_{x},$p$_{y}$}($m_{j}=1/2$) band. In contrast to the textit{s,p$_{z}$}-derived band, the hexagonal warping predominately is accompanied by substantial out-of-plane spin polarization $S_{z}$ up to 24% in the dispersion of textit{p$_{x}$,p$_{y}$}($m_{j}=1/2$) band with an in-plane orbital symmetry.
The first principles density functional theory (DFT) is applied to study effects of molecular adsorption on optical losses of silver (111) surface. The ground states of the systems including water, methanol, and ethanol molecules adsorbed on Ag (111)
surface were obtained by the total energy minimization method within the local density approximation (LDA). Optical functions were calculated within the Random Phase Approximation (RPA) approach. Contribution of the surface states to optical losses was studied by calculations of the dielectric function of bare Ag (111) surface. Substantial modifications of the real and imaginary parts of the dielectric functions spectra in the near infrared and visible spectral regions, caused by surface states and molecular adsorption, were obtained. The results are discussed in comparison with available experimental data.
In order to explain the anisotropic Rashba-Bychkov effect observed in several metallic surface-state systems, we use k.p perturbation theory with a simple group-theoretical analysis and construct effective Rashba Hamiltonians for different point grou
ps up to third order in the wavenumber. We perform relativistic ab initio calculations for the Bi/Ag(111) ordered surface alloy and from the calculated splitting of the band dispersion we find evidence of the predicted third-order terms. Furthermore, we derive expressions for the corresponding third-order Rashba parameters to provide a simple explanation to the qualitative difference concerning the Rashba-Bychkov splitting of the surface states at Au(111) and Bi/Ag(111).
Part of developing new strategies for fabrications of nanowire structures involves in many cases the aid of metal nanoparticles (NPs). It is highly beneficial if one can define both diameter and position of the initial NPs and make well-defined nanow
ire arrays. This sets additional requirement on the NPs with respect to being able to withstand a pre-growth annealing process (i.e. de- oxidation of the III-V semiconductor surface) in an epitaxy system. Recently, it has been demonstrated that Ag may be an alternative to using Au NPs as seeds for particle-seeded nanowire fabrication. This work brings light onto the effect of annealing of Au, Ag and Au-Ag alloy NP arrays in two commonly used epitaxial systems, the Molecular Beam Epitaxy (MBE) and the Metalorganic Vapor Phase Epitaxy (MOVPE). The NP arrays are fabricated with the aid of Electron Beam Lithography on GaAs 100 and 111B wafers and the evolution of the NPs with respect to shape, size and position on the surfaces are studied after annealing using Scanning Electron Microscopy (SEM). We find that while the Au NP arrays are found to be stable when annealed up to 600 $^{circ}$C in a MOVPE system, a diameter and pitch dependent splitting of the particles are seen for annealing in a MBE system. The Ag NP arrays are less stable, with smaller diameters ($leq$ 50 nm) dissolving during annealing in both epitaxial systems. In general, the mobility of the NPs is observed to differ between the two the GaAs 100 and 111B surfaces. While the initial pattern is found be intact on the GaAs 111B surface for a particular annealing process and particle type, the increased mobility of the NP on the 100 may influence the initial pre-defined positions at higher annealing temperatures. The effect of annealing on Au-Ag alloy NP arrays suggests that these NP can withstand necessary annealing conditions for a complete de-oxidation of GaAs surfaces.