ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher-order contributions to the Rashba-Bychkov effect with application to Bi/Ag(111) surface alloy

98   0   0.0 ( 0 )
 نشر من قبل Laszlo Szunyogh Dr
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to explain the anisotropic Rashba-Bychkov effect observed in several metallic surface-state systems, we use k.p perturbation theory with a simple group-theoretical analysis and construct effective Rashba Hamiltonians for different point groups up to third order in the wavenumber. We perform relativistic ab initio calculations for the Bi/Ag(111) ordered surface alloy and from the calculated splitting of the band dispersion we find evidence of the predicted third-order terms. Furthermore, we derive expressions for the corresponding third-order Rashba parameters to provide a simple explanation to the qualitative difference concerning the Rashba-Bychkov splitting of the surface states at Au(111) and Bi/Ag(111).



قيم البحث

اقرأ أيضاً

We have developed a method to systematically compute the form of Rashba- and Dresselhaus-like contributions to the spin Hamiltonian of heterostructures to an arbitrary order in the wavevector k. This is achieved by using the double group representati ons to construct general symmetry-allowed Hamiltonians with full spin-orbit effects within the tight-binding formalism. We have computed full-zone spin Hamiltonians for [001]-, [110]- and [111]-grown zinc blende heterostructures (D_{2d},C_{4v},C_{2v},C_{3v} point group symmetries), which are commonly used in spintronics. After an expansion of the Hamiltonian up to third order in k, we are able to obtain additional terms not found previously. The present method also provides the matrix elements for bulk zinc blendes (T_d) in the anion/cation and effective bond orbital model (EBOM) basis sets with full spin-orbit effects.
The inverse Rashba-Edelstein effect (IREE) is a spin conversion mechanism that recently attracts attention in spintronics and condensed matter physics. In this letter, we report an investigation of the IREE in Bi/Ag by using ferrimagnetic insulator y ttrium iron garnet (YIG). We prepared two types of samples with opposite directions of the Rashba field by changing a stacking order of Bi and Ag. An electric current generated by the IREE was observed from both stacks, and an efficiency of spin conversion -characterized by the IREE length- was estimated by taking into account a number of contributions left out in previous studies. This study provides a further insight into the IREE spin conversion mechanism: important step towards achieving efficient spin-charge conversion devices.
We identify topological aspects of the subextensive magnetic moment contributed by the surfaces of a three-dimensional crystallite -- assumed to be insulating in the bulk as well as on all surface facets, with trivial Chern invariants in the bulk. Th e geometric component of this subextensive moment is given by its derivative with respect to the chemical potential, at zero temperature and zero field, per unit surface area, and hence corresponds to the surface magnetic compressibility. The sum of the surface compressibilities contributed by two opposite facets of a cube-shaped crystallite is quantized to an integer multiple of the fundamental constant $e/h c$; this integer is in one-to-one correspondence with the net chirality of hinge modes on the surface of the crystallite, manifesting a link with higher-order topology. The contribution by a single facet to the magnetic compressibility need not be quantized to integers; however, symmetry and/or Hilbert-space constraints can fix the single-facet compressibility to half-integer multiples of $e/hc$, as will be exemplified by the Hopf insulator.
In systems with broken inversion symmetry spin-orbit coupling (SOC) yields a Rashba-type spin splitting of electronic states, manifested in a k-dependent splitting of the bands. While most research had previously focused on 2D electron systems, recen tly a three-dimensional (3D) form of such Rashba-effect was found in a series of bismuth tellurohalides. Whereas these materials exhibit a very large spin-splitting, they lack an important property concerning functionalization, namely the possibility to switch or tune the spin texture. This limitation can be overcome in a new class of functional materials displaying Rashba-splitting coupled to ferroelectricity: the ferroelectric Rashba semiconductors (FERS). Using spin- and angle-resolved photoemission spectroscopy (SARPES) we show that GeTe(111) forms a prime member of this class, displaying a complex spin-texture for the Rashba-split surface and bulk bands arising from the intrinsic inversion symmetry breaking caused by the ferroelectric polarization of the bulk (FE). Apart from pure surface and bulk states we find surface-bulk resonant states (SBR) whose wavefunctions entangle the spinors from the bulk and surface contributions. At the Fermi level their hybridization results in unconventional spin topologies with cochiral helicities and concomitant gap opening. The GeTe(111) surface and SBR states make the semiconductor surface conducting. At the same time our SARPES data confirm that GeTe is a narrow-gap semiconductor, suggesting that GeTe(111) electronic states are endowed with spin properties that are theoretically challenging to anticipate. As the helicity of the spins in Rashba bands is connected to the direction of the FE polarization, this work paves the way to all-electric non-volatile control of spin-transport properties in semiconductors.
The Fermi and Rashba energies of surface states in the Bi_xPb_{1-x}/Ag(111) alloy can be tuned simultaneously by changing the composition parameter x. We report on unconventional Fermi surface spin textures observed by spin and angle-resolved photoem ission spectroscopy {that are correlated with a topological transition of the Fermi surface occurring at x=0.5. We show that the surface states remain fully spin polarized upon alloying and that the spin polarization vectors are approximately tangential to the constant energy contours. We discuss the implications of the topological transition for the transport of spin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا