ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Molecular Adsorption on Optical Losses of the Ag (111) Surface

142   0   0.0 ( 0 )
 نشر من قبل Alexander Gavrilenko
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The first principles density functional theory (DFT) is applied to study effects of molecular adsorption on optical losses of silver (111) surface. The ground states of the systems including water, methanol, and ethanol molecules adsorbed on Ag (111) surface were obtained by the total energy minimization method within the local density approximation (LDA). Optical functions were calculated within the Random Phase Approximation (RPA) approach. Contribution of the surface states to optical losses was studied by calculations of the dielectric function of bare Ag (111) surface. Substantial modifications of the real and imaginary parts of the dielectric functions spectra in the near infrared and visible spectral regions, caused by surface states and molecular adsorption, were obtained. The results are discussed in comparison with available experimental data.



قيم البحث

اقرأ أيضاً

The geometrical and electronic properties of the monolayer (ML) of tetracene (Tc) molecules on Ag(111) are systematically investigated by means of DFT calculations with the use of localized basis set. The bridge and hollow adsorption positions of the molecule in the commensurate $gamma$-Tc/Ag(111) are revealed to be the most stable and equally favorable irrespective to the approximation chosen for the exchange-correlation functional. The binding energy is entirely determined by the long-range dispersive interaction. The former lowest unoccupied orbital remains being unoccupied in the case of $gamma$-Tc/Ag(111) as well as in the $alpha$-phase with increased coverage. The unit cell of the $alpha$-phase with point-on-line registry was adapted for calculations based on the available experimental data and the computed structures of the $gamma$-phase. The calculated position of the Tc/Ag(111) interface state is found to be noticeably dependent on the lattice constant of the substrate, however its energy shift with respect to the Shockley surface state of the unperturbed clean side of the slab is sensitive only to the adsorption distance and in good agreement with the experimentally measured energy shift.
Investigation of phosphate species adsorption/desorption processes was performed on Ag(100) and Ag(111) electrodes in H$_{3}$PO$_{4}$, KH$_{2}$PO$_{4}$ and K$_{3}$PO$_{4}$ solutions by Current-Potential ($j-V$) profiles and Electrochemical Impedance Spectroscopy ($EIS$). We used the equivalent circuit method to fit the impedance spectra. Different electrical equivalent circuits ($EECs$) were employed depending on the potential region that was analyzed. For potentials more negative than the onset of the hydrogen evolution reaction ($her$), a charge transfer resistance (R$_{ct}$) in parallel to the $(RC)$ branches was included. Peaks from $j-V$ profiles were integrated to estimate surface coverage. A reversible process was observed for Ag(hkl)/KH$_{2}$PO$_{4}$ systems, where a value of 0.07 ML was obtained. For Ag(111)/H$_{3}$PO$_{4}$, a coverage of about 0.024 ML was calculated from anodic/cathodic $j-V$ profiles, whereas for Ag(hkl)/K$_{3}$PO$_{4}$ systems different values were obtained from integration of anodic/cathodic peaks due to highly irreversible processes were observed. In the case of Ag(hkl)/K$_{3}$PO$_{4}$, the capacitance (C$_{(phi)}$) plots are well differentiated for the two faces, and co-adsorption of OH$^{-}$ was evaluated from resistance parameters. Characteristic face-specific relaxation times are obtained for each electrode. In addition, it was found that the onset potential of $her$ for Ag(111) at pH=1.60 was about 100 mV more negative compare to Ag(100).
Our ability to understand and tailor metal-organic interfaces is mandatory to functionalize organic complexes for next generation electronic and spintronic devices. For magnetic data storage applications, metal-carrying organic molecules, so called s ingle molecular magnets (SMM) are of particular interest as they yield the possibility to store information on the molecular scale. In this work, we focus on the adsorption properties of the prototypical SMM Sc3N@C80 grown in a monolayer film on the Ag(111) substrate. We provide clear evidence of a pyramidal distortion of the otherwise planar Sc3N core inside the carbon cage upon the adsorption on the Ag(111) surface. This adsorption induced structural change of the Sc3N@C80 molecule can be correlated to a charge transfer from the substrate into the lowest unoccupied molecular orbital of Sc3N@C80, which significantly alters the charge density of the fullerene core. Our comprehensive characterization of the Sc3N@C80-Ag(111) interface hence reveals an indirect coupling mechanism between the Sc3N core of the fullerene molecule and the noble metal surface mediated via an interfacial charge transfer. Our work shows that such an indirect coupling between the encapsulated metal centers of SMM and metal surfaces can strongly affect the geometric structure of the metallic centers and thereby potentially also alters the magnetic properties of SMMs on surfaces.
The effects of a step defect and a random array of point defects (such as vacancies or substitutional impurities) on the force of friction acting on a xenon monolayer film as it slides on a silver (111) substrate are studied by molecular dynamic simu lations and compared with the results of lowest order perturbation theory in the substrate corrugation potential. For the case of a step, the magnitude and velocity dependence of the friction force are strongly dependent on the direction of sliding respect to the step and the corrugation strength. When the applied force F is perpendicular to the step, the film is pinned forF less than a critical force Fc. Motion of the film along the step, however, is not pinned. Fluctuations in the sliding velocity in time provide evidence of both stick-slip motion and thermally activated creep. Simulations done with a substrate containing a 5 percent concentration of random point defects for various directions of the applied force show that the film is pinned for the force below a critical value. The critical force, however, is still much lower than the effective inertial force exerted on the film by the oscillations of the substrate in experiments done with a quartz crystal microbalance (QCM). Lowest order perturbation theory in the substrate potential is shown to give results consistent with the simulations, and it is used to give a physical picture of what could be expected for real surfaces which contain many defects.
We employ room-temperature ultrahigh vacuum scanning tunneling microscopy (UHV STM) and {em ab-initio} calculations to study graphene flakes that were adsorbed onto the Si(111)$-$7$times$7 surface. The characteristic 7$times$7 reconstruction of this semiconductor substrate can be resolved through graphene at all scanning biases, thus indicating that the atomistic configuration of the semiconducting substrate is not altered upon graphene adsorption. Large-scale {em ab-initio} calculations confirm these experimental observations and point to a lack of chemical bonding among interfacial graphene and silicon atoms. Our work provides insight into atomic-scale chemistry between graphene and highly-reactive surfaces, directing future passivation and chemical interaction work in graphene-based heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا