ﻻ يوجد ملخص باللغة العربية
We consider Grovers search algorithm on a model quantum computer implemented on a chain of four or five nuclear spins with first and second neighbour Ising interactions. Noise is introduced into the system in terms of random fluctuations of the external fields. By averaging over many repetitions of the algorithm, the output state becomes effectively a mixed state. We study its overlap with the nominal output state of the algorithm, which is called fidelity. We find either an exponential or a Gaussian decay for the fidelity as a function of the strength of the noise, depending on the type of noise (static or random) and whether error supression is applied (the 2pi k-method) or not.
We implement Grovers quantum search algorithm on a nuclear spin chain quantum computer, taking into Ising type interactions between nearest and second nearest neighbours into account. The performance of the realisation of the algorithm is studied by
Grovers quantum algorithm improves any classical search algorithm. We show how random Gaussian noise at each step of the algorithm can be modelled easily because of the exact recursion formulas available for computing the quantum amplitude in Grovers
Amplitude Amplification -- a key component of Grovers Search algorithm -- uses an iterative approach to systematically increase the probability of one or multiple target states. We present novel strategies to enhance the amplification procedure by pa
We study the entanglement content of the states employed in the Grover algorithm after the first oracle call when a few searched items are concerned. We then construct a link between these initial states and hypergraphs, which provides an illustration of their entanglement properties.
We investigate the performance of Grovers quantum search algorithm on a register which is subject to loss of the particles that carry the qubit information. Under the assumption that the basic steps of the algorithm are applied correctly on the corre