ﻻ يوجد ملخص باللغة العربية
We implement Grovers quantum search algorithm on a nuclear spin chain quantum computer, taking into Ising type interactions between nearest and second nearest neighbours into account. The performance of the realisation of the algorithm is studied by numerical simulations with four spins. We determine the temporal behaviour of the fidelity during the algorithm, and we compute the final fidelity as a function of the Rabi frequency. For the latter, we obtained pronounced maxima at frequencies which fulfil the condition of the (2pi k)-method with respect to the second nearest neighbour interactions.
We consider Grovers search algorithm on a model quantum computer implemented on a chain of four or five nuclear spins with first and second neighbour Ising interactions. Noise is introduced into the system in terms of random fluctuations of the exter
We consider the realization of a quantum computer in a chain of nuclear spins coupled by an Ising interaction. Quantum algorithms can be performed with the help of appropriate radio-frequency pulses. In addition to the standard nearest-neighbor Ising
Grovers quantum algorithm improves any classical search algorithm. We show how random Gaussian noise at each step of the algorithm can be modelled easily because of the exact recursion formulas available for computing the quantum amplitude in Grovers
By using the method of density-matrix renormalization-group to solve the different spin-spin correlation functions, the nearest-neighbouring entanglement(NNE) and next-nearest-neighbouring entanglement(NNNE) of one-dimensional alternating Heisenberg
Amplitude Amplification -- a key component of Grovers Search algorithm -- uses an iterative approach to systematically increase the probability of one or multiple target states. We present novel strategies to enhance the amplification procedure by pa