ﻻ يوجد ملخص باللغة العربية
We investigate the performance of Grovers quantum search algorithm on a register which is subject to loss of the particles that carry the qubit information. Under the assumption that the basic steps of the algorithm are applied correctly on the correspondingly shrinking register, we show that the algorithm converges to mixed states with 50% overlap with the target state in the bit positions still present. As an alternative to error correction, we present a procedure that combines the outcome of different trials of the algorithm to determine the solution to the full search problem. The procedure may be relevant for experiments where the algorithm is adapted as the loss of particles is registered, and for experiments with Rydberg blockade interactions among neutral atoms, where monitoring of the atom losses is not even necessary.
Grovers quantum algorithm improves any classical search algorithm. We show how random Gaussian noise at each step of the algorithm can be modelled easily because of the exact recursion formulas available for computing the quantum amplitude in Grovers
We study the entanglement content of the states employed in the Grover algorithm after the first oracle call when a few searched items are concerned. We then construct a link between these initial states and hypergraphs, which provides an illustration of their entanglement properties.
We question whether the measurement based quantum computing algorithm is in fact Grovers algorithm or simply a similar oracular search method. The two algorithms share several qualitative features especially in the case of the trivial 4 element searc
Grovers Search algorithm was a breakthrough at the time it was introduced, and its underlying procedure of amplitude amplification has been a building block of many other algorithms and patterns for extracting information encoded in quantum states. I
Amplitude Amplification -- a key component of Grovers Search algorithm -- uses an iterative approach to systematically increase the probability of one or multiple target states. We present novel strategies to enhance the amplification procedure by pa