نتيجتنا الرئيسية في هذا البحث هي التالية: بفرض $H^m, H^n$ هي مساحات هيبروليكية للأبعاد $m$ و $n$ المتطابقة، وبفرض دالة Holder $f=(s^1,...,f^{n-1}):partial H^mto partial H^n$ بين الحدود الهندسية لـ $H^m$ و $H^n$. ثم لكل $epsilon >0$ يوجد خريطة هارمونية $u:H^mto H^n$ التي تكون متواصلة حتى الحدود (بالأحوال الإيوكليدية) و $u|_{partial H^m}=(f^1,...,f^{n-1},epsilon)$.
Our main result in this paper is the following: Given $H^m, H^n$ hyperbolic spaces of dimensional $m$ and $n$ corresponding, and given a Holder function $f=(s^1,...,f^{n-1}):partial H^mto partial H^n$ between geometric boundaries of $H^m$ and $H^n$. Then for each $epsilon >0$ there exists a harmonic map $u:H^mto H^n$ which is continuous up to the boundary (in the sense of Euclidean) and $u|_{partial H^m}=(f^1,...,f^{n-1},epsilon)$.
In 1997, J. Jost [27] and F. H. Lin [39], independently proved that every energy minimizing harmonic map from an Alexandrov space with curvature bounded from below to an Alexandrov space with non-positive curvature is locally Holder continuous. In [3
In this paper, we will show the Yaus gradient estimate for harmonic maps into a metric space $(X,d_X)$ with curvature bounded above by a constant $kappa$, $kappageq0$, in the sense of Alexandrov. As a direct application, it gives some Liouville theor
Let ${u_n}$ be a sequence of maps from a compact Riemann surface $M$ with smooth boundary to a general compact Riemannian manifold $N$ with free boundary on a smooth submanifold $Ksubset N$ satisfying [ sup_n left(| abla u_n|_{L^2(M)}+|tau(u_n)|_{L^
In this paper, we prove the Lipschitz regularity of continuous harmonic maps from an finite dimensional Alexandrov space to a compact smooth Riemannian manifold. This solves a conjecture of F. H. Lin in cite{lin97}. The proof extends the argument of Huang-Wang cite {hua-w10}.
We study relations between maps between relatively hyperbolic groups/spaces and quasisymmetric embeddings between their boundaries. More specifically, we establish a correspondence between (not necessarily coarsely surjective) quasi-isometric embeddi