ﻻ يوجد ملخص باللغة العربية
We study relations between maps between relatively hyperbolic groups/spaces and quasisymmetric embeddings between their boundaries. More specifically, we establish a correspondence between (not necessarily coarsely surjective) quasi-isometric embeddings between relatively hyperbolic groups/spaces that coarsely respect peripherals, and quasisymmetric embeddings between their boundaries satisfying suitable conditions. Further, we establish a similar correspondence regarding maps with at most polynomial distortion. We use this to characterise groups which are hyperbolic relative to some collection of virtually nilpotent subgroups as exactly those groups which admit an embedding into a truncated real hyperbolic space with at most polynomial distortion, generalising a result of Bonk and Schramm for hyperbolic groups.
We prove that the Teichmuller space of surfaces with given boundary lengths equipped with the arc metric (resp. the Teichmuller metric) is almost isometric to the Teichmuller space of punctured surfaces equipped with the Thurston metric (resp. the Teichmuller metric).
We show that a relatively hyperbolic group quasi-isometrically embeds in a product of finitely many trees if the peripheral subgroups do, and we provide an estimate on the minimal number of trees needed. Applying our result to the case of 3-manifolds
We investigate the geometry of the graphs of nonseparating curves for surfaces of finite positive genus with potentially infinitely many punctures. This graph has infinite diameter and is known to be Gromov hyperbolic by work of the author. We study
In 1997, J. Jost [27] and F. H. Lin [39], independently proved that every energy minimizing harmonic map from an Alexandrov space with curvature bounded from below to an Alexandrov space with non-positive curvature is locally Holder continuous. In [3
We build quasi--isometry invariants of relatively hyperbolic groups which detect the hyperbolic parts of the group; these are variations of the stable dimension constructions previously introduced by the authors. We prove that, given any finite col