In this paper, we prove the Lipschitz regularity of continuous harmonic maps from an finite dimensional Alexandrov space to a compact smooth Riemannian manifold. This solves a conjecture of F. H. Lin in cite{lin97}. The proof extends the argument of Huang-Wang cite {hua-w10}.
In 1997, J. Jost [27] and F. H. Lin [39], independently proved that every energy minimizing harmonic map from an Alexandrov space with curvature bounded from below to an Alexandrov space with non-positive curvature is locally Holder continuous. In [3
9], F. H. Lin proposed a challenge problem: Can the Holder continuity be improved to Lipschitz continuity? J. Jost also asked a similar problem about Lipschitz regularity of harmonic maps between singular spaces (see Page 38 in [28]). The main theorem of this paper gives a complete resolution to it.
This article addresses the regularity issue for stationary or minimizing fractional harmonic maps into spheres of order $sin(0,1)$ in arbitrary dimensions. It is shown that such fractional harmonic maps are $C^infty$ away from a small closed singular
set. The Hausdorff dimension of the singular set is also estimated in terms of $sin(0,1)$ and the stationarity/minimality assumption.
In this paper we discuss the sufficient and necessary conditions for multiple Alexandrov spaces being glued to an Alexandrov space. We propose a Gluing Conjecture, which says that the finite gluing of Alexandrov spaces is an Alexandrov space, if and
only if the gluing is by path isometry along the boundaries and the tangent cones are glued to Alexandrov spaces. This generalizes Petrunins Gluing Theorem. Under the assumptions of the Gluing Conjecture, we classify the $2$-point gluing over $(n-1,epsilon)$-regular points as local separable gluing and the gluing near un-glued $(n-1,epsilon)$-regular points as local involutional gluing. We also prove that the Gluing Conjecture is true if the complement of $(n-1,epsilon)$-regular points is discrete in the glued boundary. In particular, this implies the general Gluing Conjecture as well as a new Gluing Theorem in dimension 2.
In this paper, we will study the partial regularity theorem for stationary harmonic maps from a Riemannian manifold into a Lorentzian manifold. For a weakly stationary harmonic map $(u,v)$ from a smooth bounded open domain $OmegasubsetR^m$ to a Loren
tzian manifold with Dirichlet boundary condition, we prove that it is smooth outside a closed set whose $(m-2)$-dimension Hausdorff measure is zero. Moreover, if the target manifold $N$ does not admit any harmonic sphere $S^l$, $l=2,...,m-1$, we will show $(u,v)$ is smooth.
In this paper, we will show the Yaus gradient estimate for harmonic maps into a metric space $(X,d_X)$ with curvature bounded above by a constant $kappa$, $kappageq0$, in the sense of Alexandrov. As a direct application, it gives some Liouville theor
ems for such harmonic maps. This extends the works of S. Y. Cheng [4] and H. I. Choi [5] to harmonic maps into singular spaces.