ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of the time to the most recent common ancestor in a large branching population

128   0   0.0 ( 0 )
 نشر من قبل Steven N. Evans
 تاريخ النشر 2010
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

If we follow an asexually reproducing population through time, then the amount of time that has passed since the most recent common ancestor (MRCA) of all current individuals lived will change as time progresses. The resulting MRCA age process has been studied previously when the population has a constant large size and evolves via the diffusion limit of standard Wright--Fisher dynamics. For any population model, the sample paths of the MRCA age process are made up of periods of linear upward drift with slope +1 punctuated by downward jumps. We build other Markov processes that have such paths from Poisson point processes on $mathbb{R}_{++}timesmathbb{R}_{++}$ with intensity measures of the form $lambdaotimesmu$ where $lambda$ is Lebesgue measure, and $mu$ (the family lifetime measure) is an arbitrary, absolutely continuous measure satisfying $mu((0,infty))=infty$ and $mu((x,infty))<infty$ for all $x>0$. Special cases of this construction describe the time evolution of the MRCA age in $(1+beta)$-stable continuous state branching processes conditioned on nonextinction--a particular case of which, $beta=1$, is Fellers continuous state branching process conditioned on nonextinction. As well as the continuous time process, we also consider the discrete time Markov chain that records the value of the continuous process just before and after its successive jumps. We find transition probabilities for both the continuous and discrete time processes, determine when these processes are transient and recurrent and compute stationary distributions when they exist.



قيم البحث

اقرأ أيضاً

Using graphical methods based on a `lookdown and pruned version of the {em ancestral selection graph}, we obtain a representation of the type distribution of the ancestor in a two-type Wright-Fisher population with mutation and selection, conditional on the overall type frequency in the old population. This extends results from Lenz, Kluth, Baake, and Wakolbinger (Theor. Pop. Biol., 103 (2015), 27-37) to the case of heavy-tailed offspring, directed by a reproduction measure $Lambda$. The representation is in terms of the equilibrium tail probabilities of the line-counting process $L$ of the graph. We identify a strong pathwise Siegmund dual of $L$, and characterise the equilibrium tail probabilities of $L$ in terms of hitting probabilities of the dual process.
For a beneficial allele which enters a large unstructured population and eventually goes to fixation, it is known that the time to fixation is approximately $2log(alpha)/alpha$ for a large selection coefficient $alpha$. For a population that is distr ibuted over finitely many colonies, with migration between these colonies, we detect various regimes of the migration rate $mu$ for which the fixation times have different asymptotics as $alpha to infty$. If $mu$ is of order $alpha$, the allele fixes (as in the spatially unstructured case) in time $sim 2log(alpha)/alpha$. If $mu$ is of order $alpha^gamma, 0leq gamma leq 1$, the fixation time is $sim (2 + (1-gamma)Delta) log(alpha)/alpha$, where $Delta$ is the number of migration steps that are needed to reach all other colonies starting from the colony where the beneficial allele appeared. If $mu = 1/log(alpha)$, the fixation time is $sim (2+S)log(alpha)/alpha$, where $S$ is a random time in a simple epidemic model. The main idea for our analysis is to combine a new moment dual for the process conditioned to fixation with the time reversal in equilibrium of a spatial version of Neuhauser and Krones ancestral selection graph.
We consider the Moran model in continuous time with two types, mutation, and selection. We concentrate on the ancestral line and its stationary type distribution. Building on work by Fearnhead (J. Appl. Prob. 39 (2002), 38-54) and Taylor (Electron. J . Probab. 12 (2007), 808-847), we characterise this distribution via the fixation probability of the offspring of all individuals of favourable type (regardless of the offsprings types). We concentrate on a finite population and stay with the resulting discrete setting all the way through. This way, we extend previous results and gain new insight into the underlying particle picture.
In this work, we consider a modification of the usual Branching Random Walk (BRW), where we give certain independent and identically distributed (i.i.d.) displacements to all the particles at the $n$-th generation, which may be different from the dri ving increment distribution. This model was first introduced by Bandyopadhyay and Ghosh (2021) and they termed it as Last Progeny Modified Branching Random Walk (LPM-BRW). Under very minimal assumptions, we derive the large deviation principle (LDP) for the right-most position of a particle in generation $n$. As a byproduct, we also complete the LDP for the classical model, which complements the earlier work by Gantert and H{o}felsauer (2018).
The stationary asymptotic properties of the diffusion limit of a multi-type branching process with neutral mutations are studied. For the critical and subcritical processes the interesting limits are those of quasi-stationary distributions conditione d on non-extinction. Limiting distributions for supercritical and critical processes are found to collapse onto rays aligned with stationary eigenvectors of the mutation rate matrix, in agreement with known results for discrete multi-type branching processes. For the sub-critical process the quasi-stationary distribution is obtained to first order in the overall mutation rate, which is assumed to be small. The sampling distribution over allele types for a sample of given finite size is found to agree to first order in mutation rates with the analogous sampling distribution for a Wright-Fisher diffusion with constant population size.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا