ﻻ يوجد ملخص باللغة العربية
In this work, we consider a modification of the usual Branching Random Walk (BRW), where we give certain independent and identically distributed (i.i.d.) displacements to all the particles at the $n$-th generation, which may be different from the driving increment distribution. This model was first introduced by Bandyopadhyay and Ghosh (2021) and they termed it as Last Progeny Modified Branching Random Walk (LPM-BRW). Under very minimal assumptions, we derive the large deviation principle (LDP) for the right-most position of a particle in generation $n$. As a byproduct, we also complete the LDP for the classical model, which complements the earlier work by Gantert and H{o}felsauer (2018).
In this work, we consider a modification of the usual Branching Random Walk (BRW), where we give certain independent and identically distributed (i.i.d.) displacements to all the particles at the $n$-th generation, which may be different from the dri
We prove large deviation results for the position of the rightmost particle, denoted by $M_n$, in a one-dimensional branching random walk in a case when Cramers condition is not satisfied. More precisely we consider step size distributions with stret
We study one-dimensional nearest neighbour random walk in site-random environment. We establish precise (sharp) large deviations in the so-called ballistic regime, when the random walk drifts to the right with linear speed. In the sub-ballistic regim
We obtain estimates for large and moderate deviations for the capacity of the range of a random walk on $mathbb{Z}^d$, in dimension $dge 5$, both in the upward and downward directions. The results are analogous to those we obtained for the volume of
We obtain sharp upper and lower bounds for the moderate deviations of the volume of the range of a random walk in dimension five and larger. Our results encompass two regimes: a Gaussian regime for small deviations, and a stretched exponential regime