ﻻ يوجد ملخص باللغة العربية
Using graphical methods based on a `lookdown and pruned version of the {em ancestral selection graph}, we obtain a representation of the type distribution of the ancestor in a two-type Wright-Fisher population with mutation and selection, conditional on the overall type frequency in the old population. This extends results from Lenz, Kluth, Baake, and Wakolbinger (Theor. Pop. Biol., 103 (2015), 27-37) to the case of heavy-tailed offspring, directed by a reproduction measure $Lambda$. The representation is in terms of the equilibrium tail probabilities of the line-counting process $L$ of the graph. We identify a strong pathwise Siegmund dual of $L$, and characterise the equilibrium tail probabilities of $L$ in terms of hitting probabilities of the dual process.
We investigate the behaviour of the genealogy of a Wright-Fisher population model under the influence of a strong seed-bank effect. More precisely, we consider a simple seed-bank age distribution with two atoms, leading to either classical or long ge
Consider a two-type Moran population of size $N$ subject to selection and mutation, which is immersed in a varying environment. The population is susceptible to exceptional changes in the environment, which accentuate the selective advantage of the f
We study the common ancestor type distribution in a $2$-type Moran model with population size $N$, mutation and selection, and in the deterministic limit regime arising in the former when $N$ tends to infinity, without any rescaling of parameters or
If we follow an asexually reproducing population through time, then the amount of time that has passed since the most recent common ancestor (MRCA) of all current individuals lived will change as time progresses. The resulting MRCA age process has be
We derive and apply a partial differential equation for the moment generating function of the Wright-Fisher model of population genetics.