ترغب بنشر مسار تعليمي؟ اضغط هنا

The common ancestor type distribution of a $Lambda$-Wright-Fisher process with selection and mutation

147   0   0.0 ( 0 )
 نشر من قبل Ellen Baake
 تاريخ النشر 2016
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using graphical methods based on a `lookdown and pruned version of the {em ancestral selection graph}, we obtain a representation of the type distribution of the ancestor in a two-type Wright-Fisher population with mutation and selection, conditional on the overall type frequency in the old population. This extends results from Lenz, Kluth, Baake, and Wakolbinger (Theor. Pop. Biol., 103 (2015), 27-37) to the case of heavy-tailed offspring, directed by a reproduction measure $Lambda$. The representation is in terms of the equilibrium tail probabilities of the line-counting process $L$ of the graph. We identify a strong pathwise Siegmund dual of $L$, and characterise the equilibrium tail probabilities of $L$ in terms of hitting probabilities of the dual process.



قيم البحث

اقرأ أيضاً

We investigate the behaviour of the genealogy of a Wright-Fisher population model under the influence of a strong seed-bank effect. More precisely, we consider a simple seed-bank age distribution with two atoms, leading to either classical or long ge nealogical jumps (the latter modeling the effect of seed-dormancy). We assume that the length of these long jumps scales like a power $N^beta$ of the original population size $N$, thus giving rise to a `strong seed-bank effect. For a certain range of $beta$, we prove that the ancestral process of a sample of $n$ individuals converges under a non-classical time-scaling to Kingmans $n-$coalescent. Further, for a wider range of parameters, we analyze the time to the most recent common ancestor of two individuals analytically and by simulation.
Consider a two-type Moran population of size $N$ subject to selection and mutation, which is immersed in a varying environment. The population is susceptible to exceptional changes in the environment, which accentuate the selective advantage of the f it individuals. In this setting, we show that the type-composition in the population is continuous with respect to the environment. This allows us to replace the deterministic environment by a random one, which is driven by a subordinator. Assuming that selection, mutation and the environment are weak in relation to $N$, we show that the type-frequency process, with time speed up by $N$, converges as $Ntoinfty$ to a Wright--Fisher-type SDE with a jump term modeling the effect of the environment. Next, we study the asymptotic behavior of the limiting model in the far future and in the distant past, both in the annealed and in the quenched setting. Our approach builds on the genealogical picture behind the model. The latter is described by means of an extension of the ancestral selection graph (ASG). The formal relation between forward and backward objects is given in the form of a moment duality between the type-frequency process and the line-counting process of a pruned version of the ASG. This relation yields characterizations of the annealed and the quenched moments of the asymptotic type distribution. A more involved pruning of the ASG allows us to obtain annealed and quenched results for the ancestral type distribution. In the absence of mutations, one of the types fixates and our results yield expressions for the fixation probabilities.
111 - Fernando Cordero 2015
We study the common ancestor type distribution in a $2$-type Moran model with population size $N$, mutation and selection, and in the deterministic limit regime arising in the former when $N$ tends to infinity, without any rescaling of parameters or time. In the finite case, we express the common ancestor type distribution as a weighted sum of combinatorial terms, and we show that the latter converges to an explicit function. Next, we recover the previous results through pruning of the ancestral selection graph (ASG). The notions of relevant ASG, finite and asymptotic pruned lookdown ASG permit to achieve this task.
If we follow an asexually reproducing population through time, then the amount of time that has passed since the most recent common ancestor (MRCA) of all current individuals lived will change as time progresses. The resulting MRCA age process has be en studied previously when the population has a constant large size and evolves via the diffusion limit of standard Wright--Fisher dynamics. For any population model, the sample paths of the MRCA age process are made up of periods of linear upward drift with slope +1 punctuated by downward jumps. We build other Markov processes that have such paths from Poisson point processes on $mathbb{R}_{++}timesmathbb{R}_{++}$ with intensity measures of the form $lambdaotimesmu$ where $lambda$ is Lebesgue measure, and $mu$ (the family lifetime measure) is an arbitrary, absolutely continuous measure satisfying $mu((0,infty))=infty$ and $mu((x,infty))<infty$ for all $x>0$. Special cases of this construction describe the time evolution of the MRCA age in $(1+beta)$-stable continuous state branching processes conditioned on nonextinction--a particular case of which, $beta=1$, is Fellers continuous state branching process conditioned on nonextinction. As well as the continuous time process, we also consider the discrete time Markov chain that records the value of the continuous process just before and after its successive jumps. We find transition probabilities for both the continuous and discrete time processes, determine when these processes are transient and recurrent and compute stationary distributions when they exist.
We derive and apply a partial differential equation for the moment generating function of the Wright-Fisher model of population genetics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا