ﻻ يوجد ملخص باللغة العربية
Dislocations are shown to be smooth at zero temperature because of the effective Coulomb-type interaction between kinks. Crossover to finite temperature rougnehing is suggested to be a mechanism responsible for the softening of he4 shear modulus recently observed by Day and Beamish (Nature, {bf 450}, 853 (2007)). We discuss also that strong suppresion of superfuidity along the dislocation core by thermal kinks can lead to locking in of the mechanical and superfluid responses.
More than half a century ago Penrose asked: are the superfluid and solid state of matter mutually exclusive or do there exist supersolid materials where the atoms form a regular lattice and simultaneously flow without friction? Recent experiments pro
The properties of a rotating Bose-Einstein condensate confined in a prolate cylindrically symmetric trap are explored both analytically and numerically. As the rotation frequency increases, an ever greater number of vortices are energetically favored
We investigate the thermodynamics of a crystalline solid applying q-deformed algebra of Fibonacci oscillators through the generalized Fibonacci sequence of two real and independent deformation parameters q1 and q2. We based part of our study on both
We study the thermodynamic properties of solid and metal electrons in the nonextensive quantum statistics with a nonextensive parameter transformation. First we study the nonextensive grand canonical distribution function and the nonextensive quantum
The fundamental interactions between an edge dislocation and a random solid solution are studied by analyzing dislocation line roughness profiles obtained from molecular dynamics simulations of Fe0.70Ni0.11 Cr0.19 over a range of stresses and tempera