ﻻ يوجد ملخص باللغة العربية
We study the thermodynamic properties of solid and metal electrons in the nonextensive quantum statistics with a nonextensive parameter transformation. First we study the nonextensive grand canonical distribution function and the nonextensive quantum statistics with a parameter transformation. Then we derive the generalized Boson distribution and Fermi distribution in the nonextensive quantum statistics. Further we study the thermodynamic properties of solid and metal electrons in the nonextensive quantum system, including the generalized Debye models, the generalized internal energies, the generalized capacities and chemical potential. We derive new expressions of these thermodynamic quantities, and we show that they all depend significantly on the nonextensive parameter and in the limit they recover to the forms in the classical quantum statistics. These new expressions may be applied to study the new characteristics in some nonextensive quantum systems where the long-range interactions and/or long-range correlations play a role.
The nonextensive statistical ensembles are revisited for the complex systems with long-range interactions and long-range correlations. An approximation, the value of nonextensive parameter (1-q) is assumed to be very tiny, is adopted for the limit of
We discuss experimental constraints on the free parameter of the nonextensive kinetic theory from measurements of the thermal dispersion relation in a collisionless plasma. For electrostatic plane-wave propagation, we show through a statistical analy
The underlying connection between the degrees of freedom of a system and its nonextensive thermodynamic behavior is addressed. The problem is handled by starting from a thermodynamical system with fractal structure and its analytical reduction to a f
It is argued that, using the black hole area entropy law together with the Boltzmann-Gibbs statistical mechanics and the quasinormal modes of the black holes, it is possible to determine univocally the lowest possible value for the spin $j$ in the co
We consider the behavior of electrons in an external uniform magnetic field B where the space coordinates perpendicular to B are taken as noncommuting. This results in a generalization of standard thermodynamics. Calculating the susceptibility, we fi