ﻻ يوجد ملخص باللغة العربية
More than half a century ago Penrose asked: are the superfluid and solid state of matter mutually exclusive or do there exist supersolid materials where the atoms form a regular lattice and simultaneously flow without friction? Recent experiments provide evidence that supersolid behavior indeed exists in Helium-4 -- the most quantum material known in Nature. In this paper we show that large local strain in the vicinity of crystalline defects is the origin of supersolidity in Helium-4. Although ideal crystals of Helium-4 are not supersolid, the gap for vacancy creation closes when applying a moderate stress. While a homogeneous system simply becomes unstable at this point, the stressed core of crystalline defects (dislocations and grain boundaries) undergoes a radical transformation and can become superfluid.
Dislocations are shown to be smooth at zero temperature because of the effective Coulomb-type interaction between kinks. Crossover to finite temperature rougnehing is suggested to be a mechanism responsible for the softening of he4 shear modulus rece
The irrotational nature of superfluid helium was discovered through its decoupling from the container under rotation. Similarly, the resonant period drop of a torsional oscillator (TO) containing solid helium was first interpreted as the decoupling o
A path integral Monte Carlo method based on the worm algorithm has been developed to compute the chemical potential of interacting bosonic quantum fluids. By applying it to finite-sized systems of helium-4 atoms, we have confirmed that the chemical p
The properties of a rotating Bose-Einstein condensate confined in a prolate cylindrically symmetric trap are explored both analytically and numerically. As the rotation frequency increases, an ever greater number of vortices are energetically favored
We investigate the thermodynamics of a crystalline solid applying q-deformed algebra of Fibonacci oscillators through the generalized Fibonacci sequence of two real and independent deformation parameters q1 and q2. We based part of our study on both