ترغب بنشر مسار تعليمي؟ اضغط هنا

An Enhanced Mathematical Model for Performance Evaluation of Optical Burst Switched Networks

245   0   0.0 ( 0 )
 نشر من قبل Mohamed Hamdy Morsy Osman
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper has been withdrawn by the authors.



قيم البحث

اقرأ أيضاً

In September 2020, the Broadband Forum published a new industry standard for measuring network quality. The standard centers on the notion of quality attenuation. Quality attenuation is a measure of the distribution of latency and packet loss between two points connected by a network path. A vital feature of the quality attenuation idea is that we can express detailed application requirements and network performance measurements in the same mathematical framework. Performance requirements and measurements are both modeled as latency distributions. To the best of our knowledge, existing models of the 802.11 WiFi protocol do not permit the calculation of complete latency distributions without assuming steady-state operation. We present a novel model of the WiFi protocol. Instead of computing throughput numbers from a steady-state analysis of a Markov chain, we explicitly model latency and packet loss. Explicitly modeling latency and loss allows for both transient and steady-state analysis of latency distributions, and we can derive throughput numbers from the latency results. Our model is, therefore, more general than the standard Markov chain methods. We reproduce several known results with this method. Using transient analysis, we derive bounds on WiFi throughput under the requirement that latency and packet loss must be bounded.
With the proliferation of mobile computing devices, the demand for continuous network connectivity regardless of physical location has spurred interest in the use of mobile ad hoc networks. Since Transmission Control Protocol (TCP) is the standard ne twork protocol for communication in the internet, any wireless network with Internet service need to be compatible with TCP. TCP is tuned to perform well in traditional wired networks, where packet losses occur mostly because of congestion. However, TCP connections in Ad-hoc mobile networks are plagued by problems such as high bit error rates, frequent route changes, multipath routing and temporary network partitions. The throughput of TCP over such connection is not satisfactory, because TCP misinterprets the packet loss or delay as congestion and invokes congestion control and avoidance algorithm. In this research, the performance of TCP in Adhoc mobile network with high Bit Error rate (BER) and mobility is studied and investigated. Simulation model is implemented and experiments are performed using the Network Simulatior 2 (NS2).
58 - Ahmed Altaher 2015
Present-day developments, in electrical power transmission and distribution, require considerations of the status quo. In other meaning, international regulations enforce increasing of reliability and reducing of environment impact, correspondingly t hey motivate developing of dependable systems. Power grids especially intelligent (smart grids) ones become industrial solutions that follow standardized development. The International standardization, in the field of power transmission and distribution, improve technology influences. The rise of dedicated standards for SAS (Substation Automation Systems) communications, such as the leading International Electro-technical Commission standard IEC 61850, enforces modern technological trends in this field. Within this standard, a constraint of low ETE (End-to-End) latency should be respected, and time-critical status transmission must be achieved. This experimental study emphasis on IEC 61850 SAS communication standard, e.g. IEC 61850 GOOSE (Generic Object Oriented Substation Events), to implement an investigational method to determine the protection communication delay. This method observes GOOSE behaviour by adopting monitoring and analysis capabilities. It is observed by using network test equipment, i.e. SPAN (Switch Port Analyser) and TAP (Test Access Point) devices, with on-the-shelf available hardware and software solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا