ﻻ يوجد ملخص باللغة العربية
Analyzing in detail the first corrections to the scaling hypothesis, we develop accelerated methods for the determination of critical points from finite size data. The output of these procedures are sequences of pseudo-critical points which rapidly converge towards the true critical points. In fact more rapidly than previously existing methods like the Phenomenological Renormalization Group approach. Our methods are valid in any spatial dimensionality and both for quantum or classical statistical systems. Having at disposal fast converging sequences, allows to draw conclusions on the basis of shorter system sizes, and can be extremely important in particularly hard cases like two-dimensional quantum systems with frustrations or when the sign problem occurs. We test the effectiveness of our methods both analytically on the basis of the one-dimensional XY model, and numerically at phase transitions occurring in non integrable spin models. In particular, we show how a new Homogeneity Condition Method is able to locate the onset of the Berezinskii-Kosterlitz-Thouless transition making only use of ground-state quantities on relatively small systems.
Critical phase transitions contain a variety of deep and universal physics, and are intimately tied to thermodynamic quantities through scaling relations. Yet, these notions are challenged in the context of non-Hermiticity, where spatial or temporal
We discuss the polarization amplitude of quantum spin systems in one dimension. In particular, we closely investigate it in gapless phases of those systems based on the two-dimensional conformal field theory. The polarization amplitude is defined as
A two-loop renormalization group analysis of the critical behaviour at an isotropic Lifshitz point is presented. Using dimensional regularization and minimal subtraction of poles, we obtain the expansions of the critical exponents $ u$ and $eta$, the
Continuum models with critical end points are considered whose Hamiltonian ${mathcal{H}}[phi,psi]$ depends on two densities $phi$ and $psi$. Field-theoretic methods are used to show the equivalence of the critical behavior on the critical line and at
We investigate the use of matrix product states (MPS) to approximate ground states of critical quantum spin chains with periodic boundary conditions (PBC). We identify two regimes in the (N,D) parameter plane, where N is the size of the spin chain an