ﻻ يوجد ملخص باللغة العربية
Critical phase transitions contain a variety of deep and universal physics, and are intimately tied to thermodynamic quantities through scaling relations. Yet, these notions are challenged in the context of non-Hermiticity, where spatial or temporal divergences render the thermodynamic limit ill-defined. In this work, we show that a thermodynamic grand potential can still be defined in pseudo-Hermitian Hamiltonians, and can be used to characterize aspects of criticality unique to non-Hermitian systems. Using the non-Hermitian Su-Schrieffer-Heeger (SSH) model as a paradigmatic example, we demonstrate the fractional order of topological phase transitions in the complex energy plane. These fractional orders add up to the integer order expected of a Hermitian phase transition when the model is doubled and Hermitianized. More spectacularly, gap preserving highly degenerate critical points known as non-Bloch band collapses possess fractional order that are not constrained by conventional scaling relations, testimony to the emergent extra length scale from the skin mode accumulation. Our work showcases that a thermodynamic approach can prove fruitful in revealing unconventional properties of non-Hermitian critical points.
Analyzing in detail the first corrections to the scaling hypothesis, we develop accelerated methods for the determination of critical points from finite size data. The output of these procedures are sequences of pseudo-critical points which rapidly c
We discuss the polarization amplitude of quantum spin systems in one dimension. In particular, we closely investigate it in gapless phases of those systems based on the two-dimensional conformal field theory. The polarization amplitude is defined as
An introduction to the theory of critical behavior at Lifshitz points is given, and the recent progress made in applying the field-theoretic renormalization group (RG) approach to $phi^4$ $n$-vector models representing universality classes of $m$-axi
We investigate the use of matrix product states (MPS) to approximate ground states of critical quantum spin chains with periodic boundary conditions (PBC). We identify two regimes in the (N,D) parameter plane, where N is the size of the spin chain an
Continuum models with critical end points are considered whose Hamiltonian ${mathcal{H}}[phi,psi]$ depends on two densities $phi$ and $psi$. Field-theoretic methods are used to show the equivalence of the critical behavior on the critical line and at