ﻻ يوجد ملخص باللغة العربية
The subset sum problem is a typical NP-complete problem that is hard to solve efficiently in time due to the intrinsic superpolynomial-scaling property. Increasing the problem size results in a vast amount of time consuming in conventionally available computers. Photons possess the unique features of extremely high propagation speed, weak interaction with environment and low detectable energy level, therefore can be a promising candidate to meet the challenge by constructing an a photonic computer computer. However, most of optical computing schemes, like Fourier transformation, require very high operation precision and are hard to scale up. Here, we present a chip built-in photonic computer to efficiently solve the subset sum problem. We successfully map the problem into a waveguide network in three dimensions by using femtosecond laser direct writing technique. We show that the photons are able to sufficiently dissipate into the networks and search all the possible paths for solutions in parallel. In the case of successive primes the proposed approach exhibits a dominant superiority in time consumption even compared with supercomputers. Our results confirm the ability of light to realize a complicated computational function that is intractable with conventional computers, and suggest the subset sum problem as a good benchmarking platform for the race between photonic and conventional computers on the way towards photonic supremacy.
Given a set (or multiset) S of n numbers and a target number t, the subset sum problem is to decide if there is a subset of S that sums up to t. There are several methods for solving this problem, including exhaustive search, divide-and-conquer metho
In photonic neural network a key building block is the perceptron. Here, we describe and demonstrate a complex-valued photonic perceptron that combines time and space multiplexing in a fully passive silicon photonics integrated circuit. An input time
Photonics is the platform of choice to build a modular, easy-to-network quantum computer operating at room temperature. However, no concrete architecture has been presented so far that exploits both the advantages of qubits encoded into states of lig
Distance geometry problem belongs to a class of hard problems in classical computation that can be understood in terms of a set of inputs processed according to a given transformation, and for which the number of possible outcomes grows exponentially
The mining in physics and biology for accelerating the hardcore algorithm to solve non-deterministic polynomial (NP) hard problems has inspired a great amount of special-purpose ma-chine models. Ising machine has become an efficient solver for variou