ﻻ يوجد ملخص باللغة العربية
We give a categorical semantics for a call-by-value linear lambda calculus. Such a lambda calculus was used by Selinger and Valiron as the backbone of a functional programming language for quantum computation. One feature of this lambda calculus is its linear type system, which includes a duplicability operator ! as in linear logic. Another main feature is its call-by-value reduction strategy, together with a side-effect to model probabilistic measurements. The ! operator gives rise to a comonad, as in the linear logic models of Seely, Bierman, and Benton. The side-effects give rise to a monad, as in Moggis computational lambda calculus. It is this combination of a monad and a comonad that makes the present paper interesting. We show that our categorical semantics is sound and complete.
We examine the relationship between the algebraic lambda-calculus, a fragment of the differential lambda-calculus and the linear-algebraic lambda-calculus, a candidate lambda-calculus for quantum computation. Both calculi are algebraic: each one is e
In each variant of the lambda-calculus, factorization and normalization are two key-properties that show how results are computed. Instead of proving factorization/normalization for the call-by-name (CbN) and call-by-value (CbV) variants separately,
In this paper we prove that any lambda-term that is strongly normalising for beta-reduction is also strongly normalising for beta,assoc-reduction. assoc is a call-by-value rule that has been used in works by Moggi, Joachimsky, Espirito Santo and othe
We study polymorphic type assignment systems for untyped lambda-calculi with effects, based on Moggis monadic approach. Moving from the abstract definition of monads, we introduce a version of the call-by-value computational lambda-calculus based on
We study the lambda-mu-calculus, extended with explicit substitution, and define a compositional output-based interpretation into a variant of the pi-calculus with pairing that preserves single-step explicit head reduction with respect to weak bisimi