ﻻ يوجد ملخص باللغة العربية
Simple boundary expressions for the k-th power of the cotangent line class on the moduli space of stable 1-pointed genus g curves are found for k >= 2g. The method is by virtual localization on the moduli space of maps to the projective line. As a consequence, nontrivial tautological classes in the kernel of the push-forward map associated to the irreducible boundary divisor of the moduli space of stable g+1 curves are constructed. The geometry of genus g+1 curves then provides universal equations in genus g Gromov-Witten theory. As an application, we prove all the Gromov-Witten identities conjectured recently by K. Liu and H. Xu.
In this paper, we give some new genus-3 universal equations for Gromov-Witten invariants of compact symplectic manifolds. These equations were obtained by studying new relations in the tautological ring of the moduli space of 2-pointed genus-3 stable
The weak gravitational lensing formalism can be extended to the strong lensing regime by integrating a nonlinear version of the geodesic deviation equation. The resulting roulette expansion generalises the notion of convergence, shear and flexion to
We give an Eynard-Orantin type topological recursion formula for the canonical Euclidean volume of the combinatorial moduli space of pointed smooth algebraic curves. The recursion comes from the edge removal operation on the space of ribbon graphs. A
We consider 5-point functions in conformal field theories in d > 2 dimensions. Using weight-shifting operators, we derive recursion relations which allow for the computation of arbitrary conformal blocks appearing in 5-point functions of scalar opera
In this article, a novel description of the hypergeometric differential equation found from Gelfand-Kapranov-Zelevinskys system (referred to GKZ equation) for Giventals $J$-function in the Gromov-Witten theory will be proposed. The GKZ equation invol