ﻻ يوجد ملخص باللغة العربية
In this paper, we give some new genus-3 universal equations for Gromov-Witten invariants of compact symplectic manifolds. These equations were obtained by studying new relations in the tautological ring of the moduli space of 2-pointed genus-3 stable curves. A byproduct of our search for genus-3 equations is a new genus-2 universal equation for Gromov-Witten invariants.
Simple boundary expressions for the k-th power of the cotangent line class on the moduli space of stable 1-pointed genus g curves are found for k >= 2g. The method is by virtual localization on the moduli space of maps to the projective line. As a co
In this article, a novel description of the hypergeometric differential equation found from Gelfand-Kapranov-Zelevinskys system (referred to GKZ equation) for Giventals $J$-function in the Gromov-Witten theory will be proposed. The GKZ equation invol
We consider 5-point functions in conformal field theories in d > 2 dimensions. Using weight-shifting operators, we derive recursion relations which allow for the computation of arbitrary conformal blocks appearing in 5-point functions of scalar opera
Frobenius manifold structures on the spaces of abelian integrals were constructed by I. Krichever. We use D-modules, deformation theory, and homological algebra to give a coordinate-free description of these structures. It turns out that the tangent
Given a topological modular functor $mathcal{V}$ in the sense of Walker cite{Walker}, we construct vector bundles over $bar{mathcal{M}}_{g,n}$, whose Chern classes define semi-simple cohomological field theories. This construction depends on a determ