ﻻ يوجد ملخص باللغة العربية
An integrated piecewise thermal equilibrium approach based on the first-principles calculation method has been developed to calculate bias dependent electronic structures and current- and differential conductance-voltage characteristics of the gold-benzene-1,4-dithiol-gold molecular junction. The calculated currents and differential conductance have the same order of magnitude as experimental ones. An electron transfer was found between the two electrodes when a bias is applied, which renders the two electrodes to have different local electronic structures. It was also found that when Au 5d electrons were treated as core electrons the calculated currents were overestimated, which can be understood as an underestimate of the Au-S covalent bonding and consequently the contact potential barrier and the replacement of delocalized Au 5d carriers by more itinerant delocalized Au 6sp carriers in the electrodes.
Understanding and controlling heat transport in molecular junctions would provide new routes to design nanoscale coupled electronic and phononic devices. Using first principles full quantum calculations, we tune thermal conductance of a molecular jun
We have performed electron transport and ARPES measurements on single crystals of transition metal dipnictide TaAs2 cleaved along the ($overline{2}$ 0 1) surface which has the lowest cleavage energy. A Fourier transform of the Shubnikov-de Haas oscil
We show that when a molecular junction is under an external bias, its properties can not be uniquely determined by the total electron density in the same manner as the density functional theory (DFT) for ground state (GS) properties. In order to corr
The electrical current through an arbitrary junction connecting quantum wires of spinless interacting fermions is calculated in fermionic representation. The wires are adiabatically attached to two reservoirs at chemical potentials differing by the a
The trigonal compound EuMg2Bi2 has recently been discussed in terms of its topological band properties. These are intertwined with its magnetic properties. Here detailed studies of the magnetic, thermal, and electronic transport properties of EuMg2Bi