ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanical Tuning of Thermal Transport in a Molecular Junction

185   0   0.0 ( 0 )
 نشر من قبل Davide Donadio
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding and controlling heat transport in molecular junctions would provide new routes to design nanoscale coupled electronic and phononic devices. Using first principles full quantum calculations, we tune thermal conductance of a molecular junction by mechanically compressing and extending a short alkane chain connected to graphene leads. We find that the thermal conductance of the compressed junction drops by half in comparison to the extended junction, making it possible to turn on and off the heat current. The low conductance of the off state does not vary by further approaching the leads and stems from the suppression of the transmission of the in--plane transverse and longitudinal channels. Furthermore, we show that misalignment of the leads does not reduce the conductance ratio. These results also contribute to the general understanding of thermal transport in molecular junctions.



قيم البحث

اقرأ أيضاً

We propose a method to engineer the phonon thermal transport properties of low dimensional systems. The method relies on introducing a predetermined combination of molecular adsorbates, which give rise to antiresonances at frequencies specific to the molecular species. Despite their dissimilar transmission spectra, thermal resistances due to individual molecules remain almost the same for all species. On the other hand, thermal resistance due to combinations of different species are not additive and show large differences depending on the species. Using a toy model, the physics underlying the violation of resistance summation rule is investigated. It is demonstrated that equivalent resistance of two scatterers having the same resistances can be close to the sum of the constituents or $sim$70% of it depending on the relative positions of the antiresonances. The relative positions of the antiresonances determine the net change in transmission, therefore the equivalent resistance. Since the entire spectrum is involved in phonon spectrum changes in different parts of the spectrum become important. Performing extensive first-principles based computations, we show that these distinctive attributes of phonon transport can be useful to tailor the thermal transport through low dimensional materials, especially for thermoelectric and thermal management applications.
76 - N. Sasao , H. Okada , Y. Utsumi 2019
We analyse the appearance of a mechanical torque that acts on a chiral molecule: a single-stranded DNA, in which the spin-orbit interaction is expected to induce a spin-selectivity effect. The mechanical torque is shown to appear as a result of the n on-conservation of the spin current in the presence of the spin-orbit interaction. Adopting a simple microscopic model Hamiltonian for a chiral molecule connected to source and drain leads, and accounting for the mechanical torque acting on the chiral molecule as the back action on the electrons traversing the molecule, we derive the spin continuity-equation. It connects the spin current expressed by a Landauer-type formula and the mechanical torque. Thus, by injecting a spin-polarized current from the source electrode, it is possible to generate a torque, which will rotate the DNA molecule.
We investigate the coherent energy and thermal transport in a temperature-biased long Josephson tunnel junction, when a Josephson vortex, i.e., a soliton, steadily drifts driven by an electric bias current. We demonstrate that thermal transport throu gh the junction can be controlled by the bias current, since it determines the steady-state velocity of the drifting soliton. We study the effects on thermal transport of the damping affecting the soliton dynamics. In fact, a soliton locally influences the power flowing through the junction and can cause the variation of the temperature of the device. When the soliton speed increases approaching its limiting value, i.e., the Swihart velocity, we demonstrate that the soliton-induces thermal effects significantly modify. Finally, we discuss how the appropriate material selection of the superconductors forming the junction is essential, since short quasiparticle relaxation times are required to observe fast thermal effects.
Magnetic molecules and nanomagnets can be used to influence the electronic transport in mesoscopic junction. In a magnetic field the precessional motion leads to resonances in the dc- and ac-transport properties of a nanocontact, in which the electro ns are coupled to the precession. Quantities like the dc-conductance or the ac-response provide valuable information like the level structure and the coupling parameters. Here, we address the current noise properties of such contacts. This encompasses the charge current and spin-torque shot noise, which both show a step-like behavior as functions of bias voltage and magnetic field. The charge current noise shows pronounced dips around the steps, which we trace back to interference effects of electron in quasienergy levels coupled by the molecular spin precession. We show that some components of the noise of the spin-torque currents are directly related to the Gilbert damping and, hence, are experimentally accessible. Our results show that the noise characteristics allow to investigate in more detail the coherence of spin transport in contacts containing magnetic molecules.
We have tuned in situ the proximity effect in a single graphene layer coupled to two Pt/Ta superconducting electrodes. An annealing current through the device changed the transmission coefficient of the electrode/graphene interface, increasing the pr obability of multiple Andreev reflections. Repeated annealing steps improved the contact sufficiently for a Josephson current to be induced in graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا