ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic and Transport Properties of Molecular Junctions under a Finite Bias: A Dual Mean Field Approach

190   0   0.0 ( 0 )
 نشر من قبل Chun Zhang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that when a molecular junction is under an external bias, its properties can not be uniquely determined by the total electron density in the same manner as the density functional theory (DFT) for ground state (GS) properties. In order to correctly incorporate bias-induced nonequilibrium effects, we present a dual mean field (DMF) approach. The key idea is that the total electron density together with the density of current-carrying electrons are sufficient to determine the properties of the system. Two mean fields, one for current-carrying electrons and the other one for equilibrium electrons can then be derived.By generalizing the Thomas-Fermi-Dirac (TFD) model to non-equilibrium cases, we analytically derived the DMF exchange energy density functional. We implemented the DMF approach into the computational package SIESTA to study non-equilibrium electron transport through molecular junctions. Calculations for a graphene nanoribbon (GNR) junction show that compared with the commonly used textit{ab initio} transport theory, the DMF approach could significantly reduce the electric current at low biases due to the non-equilibrium corrections to the mean field potential in the scattering region.



قيم البحث

اقرأ أيضاً

We study the electronic contribution to the main thermoelectric properties of a molecular junction consisting of a single quantum dot coupled to graphene external leads. The system electrical conductivity (G), Seebeck coefficient ($S$), and the therm al conductivity ($kappa$), are numerically calculated based on a Greens function formalism that includes contributions up to the Hartree-Fock level. We consider the system leads to be made either of pure or gapped-graphene. To describe the free electrons in the gapped-graphene electrodes we used two possible scenarios, the massive gap scenario, and the massless gap scenario, respectively. In all cases, the Fano effect is responsible for a strong violation of the Wiedemann-Franz law and we found a substantial increase of the system figure of merit $ZT$ due to a drastic reduction of the system thermal coefficient. In the case of gapped-graphene electrodes, the system figure of merit presents a maximum at an optimal value of the energy gap of the order of $Delta/Dsim$ 0.002 (massive gap scenario) and $Delta/Dsim$ 0.0026 (massless gap scenario). Additionally, for all cases, the system figure of merit is temperature dependent.
The conductance of single molecule junctions is calculated using a Landauer approach combined to many-body perturbation theory MBPT) to account for electron correlation. The mere correction of the density-functional theory eigenvalues, which is the s tandard procedure for quasiparticle calculations within MBPT, is found not to affect noticeably the zero-bias conductance. To reduce it and so improve the agreement with the experiments, the wavefunctions also need to be updated by including the non-diagonal elements of the self-energy operator.
Introduction (2) Experimental background: Test beds (8) Theoretical approaches: A microscopic model(10) The electron-phonon coupling(14)Time and energy scales(15) Theoretical methods(19)Numerical calculations(28) Incoherent vs. coherent transpo rt (28) Inelastic tunneling spectroscopy: Experimental background(31) Theoretical considerations:the weak coupling limit(36) Theoretical considerations: moderately strong coupling(41)Comparison of approximation schemes(48)Asymmetry in IETS(51)The origin of dips in IETS signals(53)Computational approaches (56) Effects of electron-electron(e-e)interactions (63) Noise (66) Non-linear conductance phenomena (73) Heating and heat conduction: General considerations(77) Heat generation(81) Heat conduction(85) Junction temperature(88) Current induced reactions (91) Summary and outlook (91)
We report on an experimental and theoretical study of nonlocal transport in superconductor hybrid structures, where two normal-metal leads are attached to a central superconducting wire. As a function of voltage bias applied to both normal-metal elec trodes, we find surprisingly large nonlocal conductance signals, almost of the same magnitude as the local conductance. We demonstrate that these signals are the result of strong heating of the superconducting wire, and that under symmetric bias conditions, heating mimics the effect of Cooper pair splitting.
We present a comprehensive study of the properties of the off-resonant conductance spectrum in oligomer nanojunctions between graphitic electrodes. By employing first-principle-based methods and the Landauer approach of quantum transport, we identify how the electronic structure of the molecular junction components is reflected in electron transport across such systems. For virtually all energies within the conduction gap of the corresponding idealised polymer chain, we show that: a) the inverse decay length of the tunnelling conductance is intrinsically defined by the complex-band structure of the molecular wire despite ultrashort oligomer lengths of few monomer units, and b) the contact conductance crucially depends on both the local density of states on the metal side and the realised interfacial contact.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا