ﻻ يوجد ملخص باللغة العربية
In this paper, we clarify some aspects on LCD codes in the literature. We first prove that a non-free LCD code does not exist over finite commutative Frobenius local rings. We then obtain a necessary and sufficient condition for the existence of LCD code over finite commutative Frobenius rings. We later show that a free constacyclic code over finite chain ring is LCD if and only if it is reversible, and also provide a necessary and sufficient condition for a constacyclic code to be reversible over finite chain rings. We illustrate the minimum Lee-distance of LCD codes over some finite commutative chain rings and demonstrate the results with examples. We also got some new optimal $mathbb{Z}_4$ codes of different lengths {which are} cyclic LCD codes over $mathbb{Z}_4$.
In this paper, we show that LCD codes are not equivalent to linear codes over small finite fields. The enumeration of binary optimal LCD codes is obtained. We also get the exact value of LD$(n,2)$ over $mathbb{F}_3$ and $mathbb{F}_4$. We study the bound of LCD codes over $mathbb{F}_q$.
In this paper we give the generalization of lifted codes over any finite chain ring. This has been done by using the construction of finite chain rings from $p$-adic fields. Further we propose a lattice construction from linear codes over finite chain rings using lifted codes.
Given a commutative ring $R$ with identity, a matrix $Ain M_{stimes l}(R)$, and $R$-linear codes $mathcal{C}_1, dots, mathcal{C}_s$ of the same length, this article considers the hull of the matrix-product codes $[mathcal{C}_1 dots mathcal{C}_s],A$.
Given $texttt{S}|texttt{R}$ a finite Galois extension of finite chain rings and $mathcal{B}$ an $texttt{S}$-linear code we define two Galois operators, the closure operator and the interior operator. We proof that a linear code is Galois invariant if
Let $mathbb{F}_q$ be a finite field of order $q$, a prime power integer such that $q=et+1$ where $tgeq 1,egeq 2$ are integers. In this paper, we study cyclic codes of length $n$ over a non-chain ring $R_{e,q}=mathbb{F}_q[u]/langle u^e-1rangle$. We de