ﻻ يوجد ملخص باللغة العربية
Let $mathcal{R}$ be a finite set of integers satisfying appropriate local conditions. We show the existence of long clusters of primes $p$ in bounded length intervals with $p-b$ squarefree for all $b in mathcal{R}$. Moreover, we can enforce that the primes $p$ in our cluster satisfy any one of the following conditions: (1) $p$ lies in a short interval $[N, N+N^{frac{7}{12}+epsilon}]$, (2) $p$ belongs to a given inhomogeneous Beatty sequence, (3) with $c in (frac{8}{9},1)$ fixed, $p^c$ lies in a prescribed interval mod $1$ of length $p^{-1+c+epsilon}$.
We show that there are infinitely many primes $p$ such that $p-1$ is divisible by a square $d^2 geq p^theta$ for $theta=1/2+1/2000.$ This improves the work of Matomaki (2009) who obtained the result for $theta=1/2-varepsilon$ (with the added constrai
Let $E$ be an elliptic curve over $Q$. It is well known that the ring of endomorphisms of $E_p$, the reduction of $E$ modulo a prime $p$ of ordinary reduction, is an order of the quadratic imaginary field $Q(pi_p)$ generated by the Frobenius element
We obtain an upper bound for the number of pairs $ (a,b) in {Atimes B} $ such that $ a+b $ is a prime number, where $ A, B subseteq {1,...,N }$ with $|A||B| , gg frac{N^2}{(log {N})^2}$, $, N geq 1$ an integer. This improves on a bound given by Balog, Rivat and Sarkozy.
In this research paper, relationship between every Mersenne prime and certain Natural numbers is explored. We begin by proving that every Mersenne prime is of the form {4n + 3,for some integer n} and generalize the result to all powers of 2. We also
It is proven that there are infinitely prime pairs whose difference is no greater than 20.