ترغب بنشر مسار تعليمي؟ اضغط هنا

Negative Differential Resistance Induced by Mn Substitution at SrRuO3/Nb:SrTiO3 Schottky Interfaces

117   0   0.0 ( 0 )
 نشر من قبل Yasuyuki Hikita
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observed a strong modulation in the current-voltage characteristics of SrRuO$_3$/Nb:SrTiO$_3$ Schottky junctions by Mn substitution in SrRuO$_3$, which induces a metal-insulator transition in bulk. The temperature dependence of the junction ideality factor indicates an increased spatial inhomogeneity of the interface potential with substitution. Furthermore, negative differential resistance was observed at low temperatures, indicating the formation of a resonant state by Mn substitution. By spatially varying the position of the Mn dopants across the interface with single unit cell control, we can isolate the origin of this resonant state to the interface SrRuO$_3$ layer. These results demonstrate a conceptually different approach to controlling interface states by utilizing the highly sensitive response of conducting perovskites to impurities.



قيم البحث

اقرأ أيضاً

SrRuO3 (SRO), a conducting transition metal oxide, is commonly used for engineering domains in BiFeO3. New oxide devices can be envisioned by integrating SRO with an oxide semiconductor as Nb doped SrTiO3 (Nb:STO). Using a three-terminal device confi guration, we study vertical transport in a SRO/Nb:STO device at the nanoscale and find local differences in transport, that originate due to the high selectivity of SRO growth on the underlying surface terminations in Nb:STO. This causes a change in the interface energy band characteristics and is explained by the differences in the spatial distribution of the interface-dipoles at the local Schottky interface.
Using nonequilibrium molecular-dynamics simulations, we study the temperature dependence of the negative differential thermal resistance that appears in two-segment Frenkel-Kontorova lattices. We apply the theoretical method based on Landauer equatio n to obtain the relationship between the heat current and the temperature, which states a fundamental interpretation about the underlying physical mechanism of the negative differential thermal resistance. The temperature profiles and transport coefficients are demonstrated to explain the crossover from diffusive to ballistic transport. The finite-size effect is also discussed.
We have observed temperature-dependent reversal of the rectifying polarity in Au/Nb:SrTiO3 Schottky junctions. By simulating current-voltage characteristics we have found that the permittivity of SrTiO3 near the interface exhibits temperature depende nce opposite to that observed in the bulk, significantly reducing the barrier width. At low temperature, tunneling current dominates the junction transport due both to such barrier narrowing and to suppressed thermal excitations. The present results demonstrate that novel junction properties can be induced by the interface permittivity.
Interfaces between complex oxides constitute a unique playground for 2D electron systems (2DES), where superconductivity and magnetism can arise from combinations of bulk insulators. The 2DES at the LaAlO3/SrTiO3 interface is one of the most studied in this regard, and its origin is determined by both the presence of a polar field in LaAlO3 and the insurgence of point defects, such as oxygen vacancies and intermixed cations. These defects usually reside in the conduction channel and are responsible for a decreased electronic mobility. In this work we use an amorphous WO3 overlayer to control the defect formation and obtain an increased electron mobility and effective mass in WO3/LaAlO3/SrTiO3 heterostructures. The studied system shows a sharp insulator-to-metal transition as a function of both LaAlO3 and WO3 layer thickness. Low-temperature magnetotransport reveals a strong magnetoresistance reaching 900% at 10 T and 1.5 K, the presence of multiple conduction channels with carrier mobility up to 80 000 cm2/Vs and an unusually high effective mass of 5.6 me. The amorphous character of the WO3 overlayer makes this a versatile approach for defect control at oxide interfaces, which could be applied to other heterestrostures disregarding the constraints imposed by crystal symmetry.
Graphene hosts a unique electron system in which electron-phonon scattering is extremely weak but electron-electron collisions are sufficiently frequent to provide local equilibrium above liquid nitrogen temperature. Under these conditions, electrons can behave as a viscous liquid and exhibit hydrodynamic phenomena similar to classical liquids. Here we report strong evidence for this transport regime. We find that doped graphene exhibits an anomalous (negative) voltage drop near current injection contacts, which is attributed to the formation of submicrometer-size whirlpools in the electron flow. The viscosity of graphenes electron liquid is found to be ~0.1 m$^2$ /s, an order of magnitude larger than that of honey, in agreement with many-body theory. Our work shows a possibility to study electron hydrodynamics using high quality graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا