ﻻ يوجد ملخص باللغة العربية
I will review the most recent and interesting results from gravitational wave detection experiments, concentrating on recent results from the LIGO Scientific Collaboration (LSC). I will outline the methodologies utilized in the searches, explain what can be said in the case of a null result, what quantities may be constrained. I will compare these results with prior expectations and discuss their significance. As I go along I will outline the prospects for future improvements.
It has been a half-decade since the first direct detection of gravitational waves, which signifies the coming of the era of the gravitational-wave astronomy and gravitational-wave cosmology. The increasing number of the detected gravitational-wave ev
Gravitational wave science is on the verge of direct observation of the waves predicted by Einsteins General Theory of Relativity and opening the exciting new field of gravitational wave astronomy. In the coming decades, ultra-sensitive arrays of gro
The emergent area of gravitational wave astronomy promises to provide revolutionary discoveries in the areas of astrophysics, cosmology, and fundamental physics. One of the most exciting possibilities is to use gravitational-wave observations to test
We describe a Bayesian formalism for analyzing individual gravitational-wave events in light of the rest of an observed population. This analysis reveals how the idea of a ``population-informed prior arises naturally from a suitable marginalization o
Gravitational waves are radiative solutions of space-time dynamics predicted by Einsteins theory of General Relativity. A world-wide array of large-scale and highly sensitive interferometric detectors constantly scrutinizes the geometry of the local