ﻻ يوجد ملخص باللغة العربية
Gravitational waves are radiative solutions of space-time dynamics predicted by Einsteins theory of General Relativity. A world-wide array of large-scale and highly sensitive interferometric detectors constantly scrutinizes the geometry of the local space-time with the hope to detect deviations that would signal an impinging gravitational wave from a remote astrophysical source. Finding the rare and weak signature of gravitational waves buried in non-stationary and non-Gaussian instrument noise is a particularly challenging problem. We will give an overview of the data-analysis techniques and associated observational results obtained so far by Virgo (in Europe) and LIGO (in the US), along with the prospects offered by the up-coming advance
The current gravitational wave detectors have identified a surprising population of heavy stellar mass black holes, and an even larger population of coalescing neutron stars. The first observations have led to many dramatic discoveries and the confir
Gravitational waves in the sensitivity band of ground-based detectors can be emitted by a number of astrophysical sources, including not only binary coalescences, but also individual spinning neutron stars. The most promising signals from such source
The field of transient astronomy has seen a revolution with the first gravitational-wave detections and the arrival of multi-messenger observations they enabled. Transformed by the first detection of binary black hole and binary neutron star mergers,
Rapid, accurate localization of gravitational wave transient events has proved critical to successful electromagnetic followup. In previous papers we have shown that localization estimates can be obtained through triangulation based on timing informa
Broadband suppression of quantum noise below the Standard Quantum Limit (SQL) becomes a top-priority problem for the future generation of large-scale terrestrial detectors of gravitational waves, as the interferometers of the Advanced LIGO project, p