ترغب بنشر مسار تعليمي؟ اضغط هنا

Indirect control with quantum accessor: coherent control by initial state preparation

263   0   0.0 ( 0 )
 نشر من قبل H. Dong
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is the second one in our series of papers on indirect quantum control assisted by quantum accessor. In this paper we propose and study a new class of indirect quantum control(IDQC) scheme based on the initial states preparation of the accessor. In the present scheme, after the initial state of the accessor is properly prepared, the system is controlled by repeatedly switching on and off the interaction between the system and the accessor. This is different from the protocol of our first paper, where we manipulate the interaction between the controlled system and the accessor. We prove the controllability of the controlled system for the proposed indirect control scheme. Furthermore, we give an example with two coupled spins qubits to illustrate the scheme, the concrete control process and the controllability.



قيم البحث

اقرأ أيضاً

Quantum walks are a well-established model for the study of coherent transport phenomena and provide a universal platform in quantum information theory. Dynamically influencing the walkers evolution gives a high degree of flexibility for studying var ious applications. Here, we present time-multiplexed finite quantum walks of variable size, the preparation of non-localized input states and their dynamical evolution. As a further application, we implement a state transfer scheme for an arbitrary input state to two different output modes. The presented experiments rely on the full dynamical control of a time-multiplexed quantum walk, which includes adjustable coin operation as well as the possibility to flexibly configure the underlying graph structures.
141 - Si Li , Z. F. Jiang , H. C. Fu 2013
Complete controllability of degenerate quantum system using quantum accessor modeled as a qubit chain with nearest neighborhood coupling is investigated. Sufficient conditions on the length of accessor and the way of coupling between controlled syste m and accessor are obtained. General approach to arbitrary finite system is presented and two and three level degenerate systems are investigated in detail.
Quantum information technologies require careful control for generating and preserving a desired target quantum state. The biggest practical obstacle is, of course, decoherence. Therefore, the reachability analysis, which in our scenario aims to esti mate the distance between the controlled state under decoherence and the target state, is of great importance to evaluate the realistic performance of those technologies. This paper presents a lower bound of the fidelity-based distance for a general open Markovian quantum system driven by the decoherence process and several types of control including feedback. The lower bound is straightforward to calculate and can be used as a guide for choosing the target state, as demonstrated in some examples. Moreover, the lower bound is applied to derive a theoretical limit in some quantum metrology problems based on a large-size atomic ensemble under control and decoherence.
376 - Yuchen Peng , Frank Gaitan 2017
We present an approach to single-shot high-fidelity preparation of an $n$-qubit state based on neighboring optimal control theory. This represents a new application of the neighboring optimal control formalism which was originally developed to produc e single-shot high-fidelity quantum gates. To illustrate the approach, and to provide a proof-of-principle, we use it to prepare the two qubit Bell state $|beta_{01}rangle = (1/sqrt{2})left[, |01rangle + |10rangle,right]$ with an error probability $epsilonsim 10^{-6}$ ($10^{-5}$) for ideal (non-ideal) control. Using standard methods in the literature, these high-fidelity Bell states can be leveraged to fault-tolerantly prepare the logical state $|overline{beta}_{01}rangle$.
We characterize the long-time projective behavior of the stochastic master equation describing a continuous, collective spin measurement of an atomic ensemble both analytically and numerically. By adding state based feedback, we show that it is possi ble to prepare highly entangled Dicke states deterministically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا