ﻻ يوجد ملخص باللغة العربية
We present an approach to single-shot high-fidelity preparation of an $n$-qubit state based on neighboring optimal control theory. This represents a new application of the neighboring optimal control formalism which was originally developed to produce single-shot high-fidelity quantum gates. To illustrate the approach, and to provide a proof-of-principle, we use it to prepare the two qubit Bell state $|beta_{01}rangle = (1/sqrt{2})left[, |01rangle + |10rangle,right]$ with an error probability $epsilonsim 10^{-6}$ ($10^{-5}$) for ideal (non-ideal) control. Using standard methods in the literature, these high-fidelity Bell states can be leveraged to fault-tolerantly prepare the logical state $|overline{beta}_{01}rangle$.
Precise control of quantum systems is of fundamental importance for quantum device engineering, such as is needed in the fields of quantum information processing, high-resolution spectroscopy and quantum metrology. When scaling up the quantum registe
Successful implementation of a fault-tolerant quantum computation on a system of qubits places severe demands on the hardware used to control the many-qubit state. It is known that an accuracy threshold $P_{a}$ exists for any quantum gate that is to
Entanglement generation in trapped-ion systems has relied thus far on two distinct but related geometric phase gate techniques: Molmer-Sorensen and light-shift gates. We recently proposed a variant of the light-shift scheme where the qubit levels are
Highly state-selective, weakly dissipative population transfer is used to irreversibly move the population of one ground state qubit level of an atomic ion to an effectively stable excited manifold with high fidelity. Subsequent laser interrogation a
Quantum information technologies require careful control for generating and preserving a desired target quantum state. The biggest practical obstacle is, of course, decoherence. Therefore, the reachability analysis, which in our scenario aims to esti