ﻻ يوجد ملخص باللغة العربية
Quantum walks are a well-established model for the study of coherent transport phenomena and provide a universal platform in quantum information theory. Dynamically influencing the walkers evolution gives a high degree of flexibility for studying various applications. Here, we present time-multiplexed finite quantum walks of variable size, the preparation of non-localized input states and their dynamical evolution. As a further application, we implement a state transfer scheme for an arbitrary input state to two different output modes. The presented experiments rely on the full dynamical control of a time-multiplexed quantum walk, which includes adjustable coin operation as well as the possibility to flexibly configure the underlying graph structures.
This is the second one in our series of papers on indirect quantum control assisted by quantum accessor. In this paper we propose and study a new class of indirect quantum control(IDQC) scheme based on the initial states preparation of the accessor.
We analyze quantum state-transfer optimization within hybrid open systems, from a noisy (write-in) qubit to its quiet counterpart (storage qubit). Intriguing interplay is revealed between our ability to avoid bath-induced errors that profoundly depen
We show that dissipative quantum state preparation processes can be protected against qubit dephasing by interlacing the state preparation control with dynamical decoupling (DD) control consisting of a sequence of short $pi$-pulses. The inhomogeneous
Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen fo
Quantum information technologies require careful control for generating and preserving a desired target quantum state. The biggest practical obstacle is, of course, decoherence. Therefore, the reachability analysis, which in our scenario aims to esti