ﻻ يوجد ملخص باللغة العربية
We consider the interaction between a relativistic fireball and material assumed to be still located just outside the progenitor star. Only a small fraction of the expected mass is sufficient to efficiently decelerate the fireball, leading to dissipation of most of its kinetic energy. Since the scattering optical depths are still large at distances comparable to the progenitor radius, the dissipated energy is trapped in the system, accelerating it to relativistic velocities. The process resembles the birth of another fireball at radii R~1e11 cm, not far from the transparency radius, and with a starting bulk Lorentz factors Gamma_c~10. As seen in the observer frame, this re--generated fireball appears collimated within an angle theta_j=1/Gamma_c. If the central engine works intermittently, the funnel can, at least partially, refill and the process can repeat itself. We discuss how this idea can help solving some open issues of the more conventional internal shock scenario for interpreting the Gamma-Ray Burst properties.
Einsteins general relativity predicts that pressure, in general stresses, play a similar role to energy density in generating gravity. The source of gravitational field, the active gravitational mass density, sometimes referred to as Whittakers mass
We numerically model the interaction between an expanding fireball and a stationary external medium whose density is either homogeneous or varies with distance as a power-law. The evolution is followed until most of the fireball kinetic energy is con
Time-resolved spectra of six short gamma-ray bursts (sGRBs), measured by the {em Swift} telescope, are used to estimate the parameters of a plerion-like model of the X-ray afterglow. The unshrouded, optically thin component of the afterglow is modell
The relative strength between forward and reverse shock emission in early gamma-ray burst afterglow reflects that of magnetic energy densities in the two shock regions. We numerically show that with the current standard treatment, the fireball magnet
It is now more than 40 years since the discovery of gamma-ray bursts (GRBs) and in the last two decades there has been major progress in the observations of bursts, the afterglows and their host galaxies. This recent progress has been fueled by the a